A Comparative Study of Efficient Numerical Schemes for Time-Fractional Subdiffusion Equation Involving Singularity

IF 1.3 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Bappa Ghosh, Jugal Mohapatra
{"title":"A Comparative Study of Efficient Numerical Schemes for Time-Fractional Subdiffusion Equation Involving Singularity","authors":"Bappa Ghosh,&nbsp;Jugal Mohapatra","doi":"10.1007/s40009-024-01488-z","DOIUrl":null,"url":null,"abstract":"<div><p>This article compares two efficient numerical schemes for solving time-fractional subdiffusion equations. The fractional derivative is taken in the Caputo sense of order <span>\\(\\alpha \\in (0,1)\\)</span>. The solution to this problem generally has a layer due to mild singularity near <span>\\(t=0\\)</span>. As a result, the standard numerical scheme degrades the convergence rate on uniform meshes. The L1-2 and L2-<span>\\(1_{\\sigma }\\)</span> techniques are used in the time direction on a graded mesh to study the layer behavior of the solution. In contrast, the spatial derivative is approximated by applying the central finite difference formula on a uniform mesh. The computational results and comparison with existing literature demonstrate the effectiveness of the proposed schemes.</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"48 4","pages":"487 - 491"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-024-01488-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article compares two efficient numerical schemes for solving time-fractional subdiffusion equations. The fractional derivative is taken in the Caputo sense of order \(\alpha \in (0,1)\). The solution to this problem generally has a layer due to mild singularity near \(t=0\). As a result, the standard numerical scheme degrades the convergence rate on uniform meshes. The L1-2 and L2-\(1_{\sigma }\) techniques are used in the time direction on a graded mesh to study the layer behavior of the solution. In contrast, the spatial derivative is approximated by applying the central finite difference formula on a uniform mesh. The computational results and comparison with existing literature demonstrate the effectiveness of the proposed schemes.

涉及奇点的时间分数次扩散方程有效数值格式的比较研究
本文比较了求解时间分数次扩散方程的两种有效数值格式。分数阶导数是按照卡普托的顺序来取\(\alpha \in (0,1)\)。这个问题的解决方案一般有一个层,由于轻微的奇点附近\(t=0\)。因此,标准数值格式在均匀网格上降低了收敛速度。在时间方向上,在梯度网格上使用L1-2和L2- \(1_{\sigma }\)技术来研究溶液的层行为。相反,空间导数是通过在均匀网格上应用中心有限差分公式来近似的。计算结果和与现有文献的比较表明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信