Criteria for Multilinear Sobolev Inequality with Non-doubling Measure in Lorentz Spaces

IF 1.6 3区 数学 Q1 MATHEMATICS
Alexander Meskhi, Lazare Natelashvili
{"title":"Criteria for Multilinear Sobolev Inequality with Non-doubling Measure in Lorentz Spaces","authors":"Alexander Meskhi,&nbsp;Lazare Natelashvili","doi":"10.1007/s13324-025-01090-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper necessary and sufficient conditions on a measure <span>\\(\\mu \\)</span> guaranteeing the boundedness of the multilinear fractional integral operator <span>\\(T_{\\gamma , \\mu }^{(m)}\\)</span> (defined with respect to a measure <span>\\(\\mu \\)</span>) from the product of Lorentz spaces <span>\\(\\prod _{k=1}^m L^{r_k, s_k}_{\\mu }\\)</span> to the Lorentz space <span>\\(L^{p,q}_{\\mu }(X)\\)</span> are established. The results are new even for linear fractional integrals <span>\\(T_{\\gamma , \\mu }\\)</span> (i.e., for <span>\\(m=1\\)</span>). From the general results we have a criterion for the validity of Sobolev–type inequality in Lorentz spaces defined for non-doubling measures. Finally, we investigate the same problem for Morrey-Lorentz spaces. To prove the main result we use the boundedness of the multilinear modifies maximal operator <span>\\(\\widetilde{\\mathcal {M}}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01090-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper necessary and sufficient conditions on a measure \(\mu \) guaranteeing the boundedness of the multilinear fractional integral operator \(T_{\gamma , \mu }^{(m)}\) (defined with respect to a measure \(\mu \)) from the product of Lorentz spaces \(\prod _{k=1}^m L^{r_k, s_k}_{\mu }\) to the Lorentz space \(L^{p,q}_{\mu }(X)\) are established. The results are new even for linear fractional integrals \(T_{\gamma , \mu }\) (i.e., for \(m=1\)). From the general results we have a criterion for the validity of Sobolev–type inequality in Lorentz spaces defined for non-doubling measures. Finally, we investigate the same problem for Morrey-Lorentz spaces. To prove the main result we use the boundedness of the multilinear modifies maximal operator \(\widetilde{\mathcal {M}}\).

Lorentz空间中非加倍测度的多线性Sobolev不等式的判据
本文建立了从洛伦兹空间的积\(\prod _{k=1}^m L^{r_k, s_k}_{\mu }\)到洛伦兹空间\(L^{p,q}_{\mu }(X)\)的多重线性分数阶积分算子\(T_{\gamma , \mu }^{(m)}\)(根据一个测度\(\mu \)定义)的有界性的测度\(\mu \)的充分必要条件。即使对于线性分数积分\(T_{\gamma , \mu }\)(即\(m=1\)),结果也是新的。从一般结果中,我们得到了非加倍测度定义的洛伦兹空间中sobolev型不等式有效性的判据。最后,我们研究了Morrey-Lorentz空间的相同问题。为了证明主要结果,我们使用了多元线性修正极大算子\(\widetilde{\mathcal {M}}\)的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信