{"title":"Design and optimization of an integrated casting-forging process for tin bronze valve bodies based on hot deformation behavior","authors":"Chunge Wang, Yangbiao Zeng, Xiang Yan, Wen Liu, Chaoyang Wang, Binfeng Wang, Meiling Zhou, Zhu Xiao","doi":"10.1007/s12289-025-01937-0","DOIUrl":null,"url":null,"abstract":"<div><p>Tin bronze valve bodies are widely used in fluid control systems requiring high corrosion resistance. However, conventional casting introduces defects such as porosity, segregation, and “sweating tin,” while forging is limited by the alloy’s thermal brittleness and difficulty in forming complex geometries. These issues hinder the integration of structural complexity with high mechanical performance. To address this, a novel integrated casting-forging process is proposed, consisting of three stages: casting, thermal holding at forging temperature, and hot forging. Using C83600 tin bronze, hot compression tests were conducted to construct a processing map and determine the optimal hot working parameters. A coupled simulation framework based on THERCAST and FORGE was developed to model solidification, homogenization, and forging, validating the feasibility of both bidirectional and triaxial extrusion schemes. Experimental trials confirmed that forging the billet while hot enabled seamless process transition, enhanced stability, and reduced cycle time. The resulting valve bodies exhibited significantly improved density of 9.25 g/cm<sup>3</sup> and mechanical properties, hardness of 169 HB. This integrated approach demonstrates clear technical feasibility and practical potential for high-performance tin bronze component manufacturing.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01937-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Tin bronze valve bodies are widely used in fluid control systems requiring high corrosion resistance. However, conventional casting introduces defects such as porosity, segregation, and “sweating tin,” while forging is limited by the alloy’s thermal brittleness and difficulty in forming complex geometries. These issues hinder the integration of structural complexity with high mechanical performance. To address this, a novel integrated casting-forging process is proposed, consisting of three stages: casting, thermal holding at forging temperature, and hot forging. Using C83600 tin bronze, hot compression tests were conducted to construct a processing map and determine the optimal hot working parameters. A coupled simulation framework based on THERCAST and FORGE was developed to model solidification, homogenization, and forging, validating the feasibility of both bidirectional and triaxial extrusion schemes. Experimental trials confirmed that forging the billet while hot enabled seamless process transition, enhanced stability, and reduced cycle time. The resulting valve bodies exhibited significantly improved density of 9.25 g/cm3 and mechanical properties, hardness of 169 HB. This integrated approach demonstrates clear technical feasibility and practical potential for high-performance tin bronze component manufacturing.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.