Weighted inequalities involving two Hardy operators

IF 1.6 3区 数学 Q1 MATHEMATICS
Amiran Gogatishvili, Tuǧçe Ünver
{"title":"Weighted inequalities involving two Hardy operators","authors":"Amiran Gogatishvili,&nbsp;Tuǧçe Ünver","doi":"10.1007/s13324-025-01101-6","DOIUrl":null,"url":null,"abstract":"<div><p>We find necessary and sufficient conditions on weights <span>\\(u_1, u_2, v_1, v_2\\)</span>, i.e. measurable, positive, and finite, a.e. on (<i>a</i>, <i>b</i>), for which there exists a positive constant <i>C</i> such that for given <span>\\(0&lt; p_1,q_1,p_2,q_2 &lt;\\infty \\)</span> the inequality </p><div><div><span>$$\\begin{aligned} \\begin{aligned}&amp;\\bigg (\\int _a^b \\bigg (\\int _a^t f(s)^{p_2} v_2(s)^{p_2} ds\\bigg )^{\\frac{q_2}{p_2}} u_2(t)^{q_2} dt \\bigg )^{\\frac{1}{q_2}}\\\\&amp;\\quad \\le C \\bigg (\\int _a^b \\bigg (\\int _a^t f(s)^{p_1} v_1(s)^{p_1} ds\\bigg )^{\\frac{q_1}{p_1}} u_1(t)^{q_1} dt \\bigg )^{\\frac{1}{q_1}} \\end{aligned} \\end{aligned}$$</span></div></div><p>holds for every non-negative, measurable function <i>f</i> on (<i>a</i>, <i>b</i>), where <span>\\(0 \\le a &lt;b \\le \\infty \\)</span>. The proof is based on a recently developed discretization method that enables us to overcome the restrictions of the earlier results.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01101-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01101-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We find necessary and sufficient conditions on weights \(u_1, u_2, v_1, v_2\), i.e. measurable, positive, and finite, a.e. on (ab), for which there exists a positive constant C such that for given \(0< p_1,q_1,p_2,q_2 <\infty \) the inequality

$$\begin{aligned} \begin{aligned}&\bigg (\int _a^b \bigg (\int _a^t f(s)^{p_2} v_2(s)^{p_2} ds\bigg )^{\frac{q_2}{p_2}} u_2(t)^{q_2} dt \bigg )^{\frac{1}{q_2}}\\&\quad \le C \bigg (\int _a^b \bigg (\int _a^t f(s)^{p_1} v_1(s)^{p_1} ds\bigg )^{\frac{q_1}{p_1}} u_1(t)^{q_1} dt \bigg )^{\frac{1}{q_1}} \end{aligned} \end{aligned}$$

holds for every non-negative, measurable function f on (ab), where \(0 \le a <b \le \infty \). The proof is based on a recently developed discretization method that enables us to overcome the restrictions of the earlier results.

涉及两个Hardy算子的加权不等式
我们找到了权值\(u_1, u_2, v_1, v_2\)的充分必要条件,即在(a, b)上可测量的,正的,有限的,a.e.,对于它们存在一个正常数C,使得对于给定的\(0< p_1,q_1,p_2,q_2 <\infty \),不等式$$\begin{aligned} \begin{aligned}&\bigg (\int _a^b \bigg (\int _a^t f(s)^{p_2} v_2(s)^{p_2} ds\bigg )^{\frac{q_2}{p_2}} u_2(t)^{q_2} dt \bigg )^{\frac{1}{q_2}}\\&\quad \le C \bigg (\int _a^b \bigg (\int _a^t f(s)^{p_1} v_1(s)^{p_1} ds\bigg )^{\frac{q_1}{p_1}} u_1(t)^{q_1} dt \bigg )^{\frac{1}{q_1}} \end{aligned} \end{aligned}$$对于每一个非负的,可测量的函数f在(a, b)上成立,其中\(0 \le a <b \le \infty \)。证明是基于最近发展的离散化方法,使我们能够克服早期结果的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信