Jian Ge, Lei Ming, Shi-Dong Liang, Hong-Hao Zhang, Tiberiu Harko
{"title":"Can the cosmological \\(^{7}{\\mathrm{Li}}\\) problem be solved in the Weyl-type \\(f(Q,T)\\) modified gravity theory?","authors":"Jian Ge, Lei Ming, Shi-Dong Liang, Hong-Hao Zhang, Tiberiu Harko","doi":"10.1007/s10509-025-04446-3","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most powerful evidence for the Big Bang theory is the prediction of the primordial abundances of the elements by the Big Bang Nucleosynthesis (BBN) theory. The BBN theory in its standard formulation is a parameter-free theory, with the precise knowledge of the baryon-to-photon ratio of the Universe, obtained from studies of the anisotropies of cosmic microwave background radiation. The theoretical abundances of light elements during primordial nucleosynthesis and those determined from observations are in good agreement throughout a range of nine orders of magnitude. However, there is still a significant difference of the <sup>7</sup>Li abundance, overestimated by a factor of ∼ 2.5 when calculated theoretically. In the present work we will consider the nucleosynthesis process in the framework of the Weyl-type f(Q,T) theory, a modified gravity theory representing an extension of the f(Q) and f(Q,T) type theories, obtained under the assumption that the scalar non-metricity Q of the space-time is expressed in its standard Weyl form. Hence, the nonmetricity of the spacetime is fully determined by a vector field <span>\\(w^{\\mu }\\)</span>. The theory can give a good description of the observational data, and of the evolution of the late-time Universe. We show that in some parameter ranges the Lithium abundance can be explained, and these ranges have a relatively weak dependence on the initial value of the Weyl vector.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04446-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04446-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most powerful evidence for the Big Bang theory is the prediction of the primordial abundances of the elements by the Big Bang Nucleosynthesis (BBN) theory. The BBN theory in its standard formulation is a parameter-free theory, with the precise knowledge of the baryon-to-photon ratio of the Universe, obtained from studies of the anisotropies of cosmic microwave background radiation. The theoretical abundances of light elements during primordial nucleosynthesis and those determined from observations are in good agreement throughout a range of nine orders of magnitude. However, there is still a significant difference of the 7Li abundance, overestimated by a factor of ∼ 2.5 when calculated theoretically. In the present work we will consider the nucleosynthesis process in the framework of the Weyl-type f(Q,T) theory, a modified gravity theory representing an extension of the f(Q) and f(Q,T) type theories, obtained under the assumption that the scalar non-metricity Q of the space-time is expressed in its standard Weyl form. Hence, the nonmetricity of the spacetime is fully determined by a vector field \(w^{\mu }\). The theory can give a good description of the observational data, and of the evolution of the late-time Universe. We show that in some parameter ranges the Lithium abundance can be explained, and these ranges have a relatively weak dependence on the initial value of the Weyl vector.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.