Quantum Mpemba effects from symmetry perspectives

IF 5.9
Hui Yu, Shuo Liu, Shi-Xin Zhang
{"title":"Quantum Mpemba effects from symmetry perspectives","authors":"Hui Yu,&nbsp;Shuo Liu,&nbsp;Shi-Xin Zhang","doi":"10.1007/s43673-025-00157-7","DOIUrl":null,"url":null,"abstract":"<div><p>Non-equilibrium dynamics have become a central research focus, exemplified by the counterintuitive Mpemba effect where initially hotter systems can cool faster than colder ones. Studied extensively in both classical and quantum regimes, this phenomenon reveals diverse and complex behaviors across different systems. This review provides a concise overview of the quantum Mpemba effect (QME), specifically emphasizing its connection to symmetry breaking and restoration in closed quantum many-body systems. We begin by outlining the classical Mpemba effect and its quantum counterparts, summarizing key findings. Subsequently, we introduce entanglement asymmetry and charge variance as key metrics for probing the QME from symmetry perspectives. Leveraging these tools, we analyze the early- and late-time dynamics of these quantities under Hamiltonian evolution and random unitary circuits. We conclude by discussing significant challenges and promising avenues for future research.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00157-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00157-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-equilibrium dynamics have become a central research focus, exemplified by the counterintuitive Mpemba effect where initially hotter systems can cool faster than colder ones. Studied extensively in both classical and quantum regimes, this phenomenon reveals diverse and complex behaviors across different systems. This review provides a concise overview of the quantum Mpemba effect (QME), specifically emphasizing its connection to symmetry breaking and restoration in closed quantum many-body systems. We begin by outlining the classical Mpemba effect and its quantum counterparts, summarizing key findings. Subsequently, we introduce entanglement asymmetry and charge variance as key metrics for probing the QME from symmetry perspectives. Leveraging these tools, we analyze the early- and late-time dynamics of these quantities under Hamiltonian evolution and random unitary circuits. We conclude by discussing significant challenges and promising avenues for future research.

对称视角下的量子Mpemba效应
非平衡动力学已经成为研究的中心焦点,例如反直觉的Mpemba效应,即最初较热的系统比较冷的系统冷却得更快。在经典和量子体系中进行了广泛的研究,这一现象揭示了不同系统中多样而复杂的行为。本文简要介绍了量子Mpemba效应(QME),特别强调了它与封闭量子多体系统对称性破缺和恢复的关系。我们首先概述了经典的姆潘巴效应及其量子对应物,总结了主要发现。随后,我们引入了纠缠不对称性和电荷方差作为从对称角度探测QME的关键指标。利用这些工具,我们分析了这些量在哈密顿演化和随机酉电路下的早期和晚期动力学。最后,我们讨论了未来研究的重大挑战和有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信