Hyers–Ulam–Rassias stability of a finite variable cubic functional equation in matrix paranormed spaces

IF 0.7 Q2 MATHEMATICS
Kandhasamy Tamilvanan, G. Balasubramanian, Choonkil Park, Jung Rye Lee
{"title":"Hyers–Ulam–Rassias stability of a finite variable cubic functional equation in matrix paranormed spaces","authors":"Kandhasamy Tamilvanan,&nbsp;G. Balasubramanian,&nbsp;Choonkil Park,&nbsp;Jung Rye Lee","doi":"10.1007/s13370-025-01350-5","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the finite variable cubic functional equation of the form </p><div><div><span>$$\\begin{aligned} \\sum _{a=1}^{m}\\phi \\left( -t_{a}+\\sum _{b=1;a \\ne b}^{m}t_{b}\\right) -\\sum _{a=1}^{m}\\phi \\left( 2t_{a}\\right) =\\left( m-6\\right) \\sum _{1 \\le a&lt; b&lt; c \\le m}\\phi \\left( t_{a}+t_{b}+t_{c}\\right) \\\\ +\\left( -m^{2}+9m-14\\right) \\sum _{1\\le a&lt;b\\le m}\\phi \\left( t_{a}+t_{b}\\right) \\\\ +\\left( \\frac{m^{3}-11 m^{2}+28 m-36}{2}\\right) \\sum _{a=1}^{m}\\phi \\left( t_{a}\\right) \\end{aligned}$$</span></div></div><p>where <span>\\(m \\ge 4\\)</span> is a fixed integer, and we establish the Hyers–Ulam–Rassias stability results in paranormed spaces and matrix paranormed spaces.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01350-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the finite variable cubic functional equation of the form

$$\begin{aligned} \sum _{a=1}^{m}\phi \left( -t_{a}+\sum _{b=1;a \ne b}^{m}t_{b}\right) -\sum _{a=1}^{m}\phi \left( 2t_{a}\right) =\left( m-6\right) \sum _{1 \le a< b< c \le m}\phi \left( t_{a}+t_{b}+t_{c}\right) \\ +\left( -m^{2}+9m-14\right) \sum _{1\le a<b\le m}\phi \left( t_{a}+t_{b}\right) \\ +\left( \frac{m^{3}-11 m^{2}+28 m-36}{2}\right) \sum _{a=1}^{m}\phi \left( t_{a}\right) \end{aligned}$$

where \(m \ge 4\) is a fixed integer, and we establish the Hyers–Ulam–Rassias stability results in paranormed spaces and matrix paranormed spaces.

矩阵副形空间中有限变量三次泛函方程的Hyers-Ulam-Rassias稳定性
引入了形式为$$\begin{aligned} \sum _{a=1}^{m}\phi \left( -t_{a}+\sum _{b=1;a \ne b}^{m}t_{b}\right) -\sum _{a=1}^{m}\phi \left( 2t_{a}\right) =\left( m-6\right) \sum _{1 \le a< b< c \le m}\phi \left( t_{a}+t_{b}+t_{c}\right) \\ +\left( -m^{2}+9m-14\right) \sum _{1\le a<b\le m}\phi \left( t_{a}+t_{b}\right) \\ +\left( \frac{m^{3}-11 m^{2}+28 m-36}{2}\right) \sum _{a=1}^{m}\phi \left( t_{a}\right) \end{aligned}$$的有限变量三次泛函数方程,其中\(m \ge 4\)为固定整数,并建立了副形空间和矩阵副形空间中的Hyers-Ulam-Rassias稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信