Bingbing Chen, Dongfeng Li, Peter Davies, Richard Johnston, Xiangyun Ge, Chenfeng Li
{"title":"Recent Progress of Digital Reconstruction in Polycrystalline Materials","authors":"Bingbing Chen, Dongfeng Li, Peter Davies, Richard Johnston, Xiangyun Ge, Chenfeng Li","doi":"10.1007/s11831-025-10245-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 6","pages":"3447 - 3498"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-025-10245-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10245-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study comprehensively reviews recent advances in the digital reconstruction of polycrystalline materials. Digital reconstruction serves as both a representative volume element for multiscale modelling and a source of quantitative data for microstructure characterisation. Three main types of digital reconstruction in polycrystalline materials exist: (i) experimental reconstruction, which links processing-structure-properties-performance by reconstructing actual polycrystalline microstructures using destructive or non-destructive methods; (ii) physics-based models, which replicate evolutionary processes to establish processing-structure linkages, including cellular automata, Monte Carlo, vertex/front tracking, level set, machine learning, and phase field methods; and (iii) geometry-based models, which create ensembles of statistically equivalent polycrystalline microstructures for structure-properties-performance linkages, using simplistic morphology, Voronoi tessellation, ellipsoid packing, texture synthesis, high-order, reduced-order, and machine learning methods. This work reviews the key features, procedures, advantages, and limitations of these methods, with a particular focus on their application in constructing processing-structure-properties-performance linkages. Finally, it summarises the conclusions, challenges, and future directions for digital reconstruction in polycrystalline materials within the framework of computational materials engineering.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.