The Speed of Convergence Under the Kolmogorov–Smirnov Metric in the Soshnikov Central Limit Theorem for the Sine Process

IF 0.7 4区 数学 Q3 MATHEMATICS
Alexander Bufetov
{"title":"The Speed of Convergence Under the Kolmogorov–Smirnov Metric in the Soshnikov Central Limit Theorem for the Sine Process","authors":"Alexander Bufetov","doi":"10.1134/S1234567825020028","DOIUrl":null,"url":null,"abstract":"<p> For rescaled additive functionals of the sine process, upper bounds are obtained for their speed of convergence to the Gaussian distribution with respect to the Kolmogorov–Smirnov metric. Under scaling with coefficient <span>\\(R&gt;1\\)</span>, the Kolmogorov–Smirnov distance is bounded from above by <span>\\(c/\\log R\\)</span> for a smooth function, and by <span>\\(c/R\\)</span> for a function holomorphic in a horizontal strip. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 2","pages":"114 - 118"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825020028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For rescaled additive functionals of the sine process, upper bounds are obtained for their speed of convergence to the Gaussian distribution with respect to the Kolmogorov–Smirnov metric. Under scaling with coefficient \(R>1\), the Kolmogorov–Smirnov distance is bounded from above by \(c/\log R\) for a smooth function, and by \(c/R\) for a function holomorphic in a horizontal strip.

Soshnikov中心极限定理下正弦过程在Kolmogorov-Smirnov度量下的收敛速度
对于重标正弦过程的加性泛函,获得了其收敛于高斯分布的速度的上界。在系数\(R>1\)的标度下,对于光滑函数,Kolmogorov-Smirnov距离由\(c/\log R\)定界,对于水平条上全纯的函数,由\(c/R\)定界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信