An adaptive framework for privacy-preserving analytics in federated intrusion detection

Shwetha Jog , Damodharan Palaniappan , M.A. Jabbar
{"title":"An adaptive framework for privacy-preserving analytics in federated intrusion detection","authors":"Shwetha Jog ,&nbsp;Damodharan Palaniappan ,&nbsp;M.A. Jabbar","doi":"10.1016/j.dajour.2025.100641","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an adaptive and energy-efficient differentially private federated learning model for IDS in IoT/IIoT environments. The method combines the Fisher Information Matrix (FIM) based parameter pruning, dynamic privacy parameter scheduling and Fast Fourier Transform (FFT) based privacy budget calculation, that strikes a balance between the data utility and the level of achieved differential privacy during training while keeping model complexity and computational overhead to minimum. The efficacy of the proposed framework is substantiated on Edge-IIoTset, a real-world dataset comprising heterogeneous and multiclass attack scenarios, across centralized and federated configurations under different client counts and simulation settings. Results show 65%–72% parameter pruning at <span><math><mo>&gt;</mo></math></span>95% average accuracy over all attack types, consistent cumulative privacy budgets for varying <span><math><mi>ϵ</mi></math></span>-values and better generalization to non-IID data through an adaptive client selection. This manner provides a scalable privacy IDPS for edge-environment with the limited resources.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"17 ","pages":"Article 100641"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an adaptive and energy-efficient differentially private federated learning model for IDS in IoT/IIoT environments. The method combines the Fisher Information Matrix (FIM) based parameter pruning, dynamic privacy parameter scheduling and Fast Fourier Transform (FFT) based privacy budget calculation, that strikes a balance between the data utility and the level of achieved differential privacy during training while keeping model complexity and computational overhead to minimum. The efficacy of the proposed framework is substantiated on Edge-IIoTset, a real-world dataset comprising heterogeneous and multiclass attack scenarios, across centralized and federated configurations under different client counts and simulation settings. Results show 65%–72% parameter pruning at >95% average accuracy over all attack types, consistent cumulative privacy budgets for varying ϵ-values and better generalization to non-IID data through an adaptive client selection. This manner provides a scalable privacy IDPS for edge-environment with the limited resources.
联邦入侵检测中隐私保护分析的自适应框架
在本文中,我们提出了一种适用于IoT/IIoT环境下IDS的自适应且节能的差分私有联邦学习模型。该方法结合了基于Fisher信息矩阵(FIM)的参数修剪、动态隐私参数调度和基于快速傅里叶变换(FFT)的隐私预算计算,在训练过程中平衡了数据效用和实现的差异隐私水平,同时保持了模型复杂性和计算开销最小。提出的框架的有效性在Edge-IIoTset上得到了证实,Edge-IIoTset是一个包含异构和多类攻击场景的真实数据集,在不同的客户端计数和模拟设置下,跨越集中式和联合式配置。结果显示,在所有攻击类型中,参数修剪率为65%-72%,平均准确率为95%,对于不同的ϵ-values,累积隐私预算一致,并且通过自适应客户端选择更好地泛化到非iid数据。这种方式为资源有限的边缘环境提供了可扩展的隐私IDPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信