A diffusion model using semantic and sketch information for anomaly detection

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Li Qin , Zhenyu Yin , Feiqing Zhang , Chunhe Song , Xiaoqiang Shi
{"title":"A diffusion model using semantic and sketch information for anomaly detection","authors":"Li Qin ,&nbsp;Zhenyu Yin ,&nbsp;Feiqing Zhang ,&nbsp;Chunhe Song ,&nbsp;Xiaoqiang Shi","doi":"10.1016/j.engappai.2025.112430","DOIUrl":null,"url":null,"abstract":"<div><div>In anomaly detection, methods that employ diffusion models for anomaly localization and reconstruction have demonstrated significant achievements. However, these methods face challenges such as the misclassification of multiple types of anomalies and the inability to effectively reconstruct large-scale anomalies due to the absence of semantic and sketch information from the original images. To tackle these challenges, we propose a framework, A Diffusion Model using Semantic and Sketch Information for Anomaly Detection (DSAD), which includes a semantic and sketch-guided network (SSG), a pre-trained autoencoder, and Stable Diffusion (SD). Initially, within SSG, we introduce a Semantic <span><math><mi>&amp;</mi></math></span> Sketch Feature Fusion Module to enhance the model’s comprehension of the original images and present a Multi-scale Feature Fusion Module to maximize reconstruction accuracy. Subsequently, we connect SSG with the denoising network in SD in order to guide the network in reconstructing anomalous regions. Experiments on MVTec-AD dataset demonstrate the effectiveness of our approach which surpasses the state-of-the-art methods. The dataset and code are available at <span><span>https://github.com/QinLi-STUDY/DSAD/tree/master</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"162 ","pages":"Article 112430"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625024613","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In anomaly detection, methods that employ diffusion models for anomaly localization and reconstruction have demonstrated significant achievements. However, these methods face challenges such as the misclassification of multiple types of anomalies and the inability to effectively reconstruct large-scale anomalies due to the absence of semantic and sketch information from the original images. To tackle these challenges, we propose a framework, A Diffusion Model using Semantic and Sketch Information for Anomaly Detection (DSAD), which includes a semantic and sketch-guided network (SSG), a pre-trained autoencoder, and Stable Diffusion (SD). Initially, within SSG, we introduce a Semantic & Sketch Feature Fusion Module to enhance the model’s comprehension of the original images and present a Multi-scale Feature Fusion Module to maximize reconstruction accuracy. Subsequently, we connect SSG with the denoising network in SD in order to guide the network in reconstructing anomalous regions. Experiments on MVTec-AD dataset demonstrate the effectiveness of our approach which surpasses the state-of-the-art methods. The dataset and code are available at https://github.com/QinLi-STUDY/DSAD/tree/master.
一种利用语义和草图信息进行异常检测的扩散模型
在异常检测中,利用扩散模型进行异常定位和重建的方法取得了显著的成果。然而,这些方法面临着多种类型异常的错误分类以及由于原始图像缺乏语义和草图信息而无法有效重建大规模异常等挑战。为了应对这些挑战,我们提出了一个框架,即使用语义和草图信息进行异常检测的扩散模型(DSAD),其中包括语义和草图引导网络(SSG),预训练的自编码器和稳定扩散(SD)。首先,在SSG中,我们引入了语义草图特征融合模块来增强模型对原始图像的理解,并提出了多尺度特征融合模块来最大限度地提高重建精度。随后,我们将SSG与SD中的去噪网络连接起来,以指导网络重构异常区域。在MVTec-AD数据集上的实验证明了我们的方法的有效性,超越了最先进的方法。数据集和代码可在https://github.com/QinLi-STUDY/DSAD/tree/master上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信