CQSA-KT: Research on personalized knowledge tracing based on quantum-constructivism in sparse learning environments

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengke Bao , Zhiliang Xu , Weidong Ji
{"title":"CQSA-KT: Research on personalized knowledge tracing based on quantum-constructivism in sparse learning environments","authors":"Chengke Bao ,&nbsp;Zhiliang Xu ,&nbsp;Weidong Ji","doi":"10.1016/j.knosys.2025.114493","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge tracing (KT), as a key technology to enable personalized instruction, faces the challenges of data sparsity and insufficient personalization modeling in large-scale instructional environments. To this end, this paper proposes a constructivist-inspired quantum self-attention knowledge tracing model (CQSA-KT). The deep mapping relationship between Constructivist Learning Theory (CLT) and Quantum Computing (QC) is established by characterizing the multilevel nature of learning states through quantum states, modeling knowledge associations through quantum entanglement, and simulating the assessment process through quantum measurements. The model contains four core modules: The quantum knowledge representation embedding module (QKREM) utilizes quantum complex embedding to achieve a high-dimensional representation of knowledge states; the quantum attention interaction module (QAIM) applies quantum entanglement to model the non-local nature of knowledge associations; the quantum measurement module (QMM) introduces the quantum measurement theory for learning assessment; and the hybrid cognitive feature fusion module (HCFFM) integrates classical and quantum features. Experiments on three publicly available datasets show that CQSA-KT maintains better performance under high sparsity (&gt;98 %) conditions, significantly outperforming ten existing benchmark models. Especially in extremely sparse scenarios (only 20 % training data), the model’s AUC improves by 8.5 percentage points over the benchmark models. This theory-driven technological innovation validates the application potential of QC in education and provides a new theoretical framework for the development of intelligent education.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114493"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015321","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge tracing (KT), as a key technology to enable personalized instruction, faces the challenges of data sparsity and insufficient personalization modeling in large-scale instructional environments. To this end, this paper proposes a constructivist-inspired quantum self-attention knowledge tracing model (CQSA-KT). The deep mapping relationship between Constructivist Learning Theory (CLT) and Quantum Computing (QC) is established by characterizing the multilevel nature of learning states through quantum states, modeling knowledge associations through quantum entanglement, and simulating the assessment process through quantum measurements. The model contains four core modules: The quantum knowledge representation embedding module (QKREM) utilizes quantum complex embedding to achieve a high-dimensional representation of knowledge states; the quantum attention interaction module (QAIM) applies quantum entanglement to model the non-local nature of knowledge associations; the quantum measurement module (QMM) introduces the quantum measurement theory for learning assessment; and the hybrid cognitive feature fusion module (HCFFM) integrates classical and quantum features. Experiments on three publicly available datasets show that CQSA-KT maintains better performance under high sparsity (>98 %) conditions, significantly outperforming ten existing benchmark models. Especially in extremely sparse scenarios (only 20 % training data), the model’s AUC improves by 8.5 percentage points over the benchmark models. This theory-driven technological innovation validates the application potential of QC in education and provides a new theoretical framework for the development of intelligent education.
CQSA-KT:稀疏学习环境下基于量子建构主义的个性化知识跟踪研究
知识跟踪作为实现个性化教学的关键技术,在大规模教学环境中面临着数据稀疏性和个性化建模不足的挑战。为此,本文提出了一个建构主义启发的量子自注意知识追踪模型(CQSA-KT)。构建主义学习理论(CLT)与量子计算(QC)之间的深层映射关系,通过量子态表征学习状态的多层次性质,通过量子纠缠建模知识关联,通过量子测量模拟评估过程。该模型包含四个核心模块:量子知识表示嵌入模块(QKREM)利用量子复嵌入实现知识状态的高维表示;量子注意交互模块(QAIM)利用量子纠缠来模拟知识关联的非局域性;量子测量模块(QMM)介绍了用于学习评估的量子测量理论;混合认知特征融合模块(HCFFM)集成了经典特征和量子特征。在三个公开可用的数据集上的实验表明,CQSA-KT在高稀疏度(> 98%)条件下保持了更好的性能,显著优于现有的10个基准模型。特别是在极度稀疏的场景中(只有20%的训练数据),模型的AUC比基准模型提高了8.5个百分点。这一理论驱动的技术创新验证了QC在教育中的应用潜力,为智能教育的发展提供了新的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信