Stability of a class of complex-valued BAM neural networks with proportional delays and impulse via fixed point theory

IF 3.2 Q3 Mathematics
Min Luo , Mei Xiong , Longwei Chen , Yimin Yu
{"title":"Stability of a class of complex-valued BAM neural networks with proportional delays and impulse via fixed point theory","authors":"Min Luo ,&nbsp;Mei Xiong ,&nbsp;Longwei Chen ,&nbsp;Yimin Yu","doi":"10.1016/j.rico.2025.100612","DOIUrl":null,"url":null,"abstract":"<div><div>This paper mainly studies the stability of a class of proportional delay complex-valued BAM neural networks. Using the Banach fixed-point theorem, we obtain that the equilibrium points of the neural network exist uniquely, and at the same time, we also obtain its global exponential stability. Different from previous studies, we consider neural network systems in the complex number domain. Thus, the conclusions obtained have broader applicability. Finally, we present a numerical example to verify the validity of the result.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"21 ","pages":"Article 100612"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly studies the stability of a class of proportional delay complex-valued BAM neural networks. Using the Banach fixed-point theorem, we obtain that the equilibrium points of the neural network exist uniquely, and at the same time, we also obtain its global exponential stability. Different from previous studies, we consider neural network systems in the complex number domain. Thus, the conclusions obtained have broader applicability. Finally, we present a numerical example to verify the validity of the result.
用不动点理论研究一类具有比例时延和脉冲的复值BAM神经网络的稳定性
本文主要研究了一类比例延迟复值BAM神经网络的稳定性。利用Banach不动点定理,得到了神经网络平衡点的唯一存在性,同时也得到了神经网络的全局指数稳定性。与以往的研究不同,我们考虑的是复数域的神经网络系统。因此,所得结论具有更广泛的适用性。最后,给出了一个数值算例来验证结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信