Bayesian estimation of discretely observed diffusion processes using Wiener chaos expansion

IF 1.3 Q2 MATHEMATICS, APPLIED
Fernando Baltazar-Larios , Gabriel Adrián Salcedo-Varela , Francisco Delgado-Vences
{"title":"Bayesian estimation of discretely observed diffusion processes using Wiener chaos expansion","authors":"Fernando Baltazar-Larios ,&nbsp;Gabriel Adrián Salcedo-Varela ,&nbsp;Francisco Delgado-Vences","doi":"10.1016/j.rinam.2025.100644","DOIUrl":null,"url":null,"abstract":"<div><div>We employ a Bayesian inference technique for discretely observed diffusion processes that arise as solutions of stochastic differential equations. Our aim is to estimate the parameters of the stochastic differential equation. To achieve this, we frame the estimation procedure as a missing data problem. In this framework, the complete dataset includes the theoretically continuous-time path between observed points. We propose augmenting the dataset and using a Gibbs sampler to derive Bayesian estimators for the parameters in cases where the diffusion process is observed discretely. The Gibbs sampler is integrated with a diffusion bridge simulation technique based on the Wiener chaos expansion. The methodology and its implementation are demonstrated through examples and simulation studies. We also present an application to actual data.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100644"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We employ a Bayesian inference technique for discretely observed diffusion processes that arise as solutions of stochastic differential equations. Our aim is to estimate the parameters of the stochastic differential equation. To achieve this, we frame the estimation procedure as a missing data problem. In this framework, the complete dataset includes the theoretically continuous-time path between observed points. We propose augmenting the dataset and using a Gibbs sampler to derive Bayesian estimators for the parameters in cases where the diffusion process is observed discretely. The Gibbs sampler is integrated with a diffusion bridge simulation technique based on the Wiener chaos expansion. The methodology and its implementation are demonstrated through examples and simulation studies. We also present an application to actual data.
利用维纳混沌展开的离散观测扩散过程的贝叶斯估计
我们采用贝叶斯推理技术离散观察扩散过程出现作为随机微分方程的解决方案。我们的目的是估计随机微分方程的参数。为了实现这一点,我们将估计过程定义为缺失数据问题。在这个框架中,完整的数据集包含了观测点之间理论上的连续时间路径。我们建议扩大数据集并使用吉布斯采样器在离散观察扩散过程的情况下推导参数的贝叶斯估计。Gibbs采样器集成了基于维纳混沌展开的扩散桥模拟技术。通过实例和仿真研究证明了该方法及其实现。我们也给出了一个实际数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信