Particle, kinetic and hydrodynamic models for sea ice floes, Part I: Non-rotating floes

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Quanling Deng , Seung-Yeal Ha
{"title":"Particle, kinetic and hydrodynamic models for sea ice floes, Part I: Non-rotating floes","authors":"Quanling Deng ,&nbsp;Seung-Yeal Ha","doi":"10.1016/j.physd.2025.134951","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a comprehensive modeling framework for the dynamics of sea ice floes using particle, kinetic, and hydrodynamic approaches. Building upon the foundational work of Ha and Tadmor on the Cucker–Smale model for flocking, we derive a Vlasov-type kinetic formulation and a corresponding hydrodynamic description. The particle model incorporates essential physical properties of sea ice floes, including size, position, velocity, and interactions governed by Newtonian mechanics. By extending these principles, the kinetic model captures large-scale features through the phase-space distribution, and we also present a hydrodynamic model using the velocity moments and a suitable closure condition. In this paper, as an idea-introductory step, we assume that ice floes are non-rotating and focus on the linear velocity dynamics. Our approach highlights the role of contact forces, ocean drag effects, and conservation laws in the multiscale description of sea ice dynamics, offering a potential pathway for the improved understanding and prediction of sea ice behaviors in changing climatic conditions.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134951"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a comprehensive modeling framework for the dynamics of sea ice floes using particle, kinetic, and hydrodynamic approaches. Building upon the foundational work of Ha and Tadmor on the Cucker–Smale model for flocking, we derive a Vlasov-type kinetic formulation and a corresponding hydrodynamic description. The particle model incorporates essential physical properties of sea ice floes, including size, position, velocity, and interactions governed by Newtonian mechanics. By extending these principles, the kinetic model captures large-scale features through the phase-space distribution, and we also present a hydrodynamic model using the velocity moments and a suitable closure condition. In this paper, as an idea-introductory step, we assume that ice floes are non-rotating and focus on the linear velocity dynamics. Our approach highlights the role of contact forces, ocean drag effects, and conservation laws in the multiscale description of sea ice dynamics, offering a potential pathway for the improved understanding and prediction of sea ice behaviors in changing climatic conditions.
海洋浮冰的颗粒、动力和水动力模型,第一部分:非旋转浮冰
我们介绍了一个综合的建模框架,海冰的动力学使用粒子,动力学和水动力学的方法。在Ha和Tadmor对cucker - small群集模型的基础工作的基础上,我们推导了vlasov型动力学公式和相应的流体动力学描述。粒子模型结合了海洋浮冰的基本物理特性,包括大小、位置、速度和由牛顿力学控制的相互作用。通过扩展这些原理,动力学模型通过相空间分布捕获了大尺度特征,并且我们还提出了一个使用速度矩和合适的闭合条件的水动力模型。在本文中,作为一个思想的介绍步骤,我们假设浮冰是不旋转的,并专注于线速度动力学。我们的方法强调了接触力、海洋阻力效应和守恒定律在海冰动力学多尺度描述中的作用,为提高对气候条件变化下海冰行为的理解和预测提供了一条潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信