On the combined method for solving the inverse problem of the Zakharov–Shabat system

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
S.B. Medvedev , I.A. Vaseva , M.P. Fedoruk
{"title":"On the combined method for solving the inverse problem of the Zakharov–Shabat system","authors":"S.B. Medvedev ,&nbsp;I.A. Vaseva ,&nbsp;M.P. Fedoruk","doi":"10.1016/j.physd.2025.134942","DOIUrl":null,"url":null,"abstract":"<div><div>We study the combined method for solving the inverse problem of the Zakharov–Shabat system associated with the nonlinear Schrödinger equation. The method is based on a high-precision algorithm for the Gelfand–Levitan–Marchenko equation for a continuous spectrum and the Darboux method for a discrete spectrum. A comparison of the combined Darboux method and the GLME-based algorithm is made.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134942"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the combined method for solving the inverse problem of the Zakharov–Shabat system associated with the nonlinear Schrödinger equation. The method is based on a high-precision algorithm for the Gelfand–Levitan–Marchenko equation for a continuous spectrum and the Darboux method for a discrete spectrum. A comparison of the combined Darboux method and the GLME-based algorithm is made.
求解Zakharov-Shabat系统逆问题的组合方法
研究了求解非线性Schrödinger方程的Zakharov-Shabat方程组逆问题的组合方法。该方法基于连续谱的Gelfand-Levitan-Marchenko方程的高精度算法和离散谱的Darboux方法。将Darboux法与基于glme的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信