Yongqiang Wang , Weigang Li , Wenping Liu , Zhe Xu , Zhiqiang Tian
{"title":"Robust partial 3D point cloud registration via confidence estimation under global context","authors":"Yongqiang Wang , Weigang Li , Wenping Liu , Zhe Xu , Zhiqiang Tian","doi":"10.1016/j.ins.2025.122705","DOIUrl":null,"url":null,"abstract":"<div><div>Partial point cloud registration is essential for autonomous perception and 3D scene understanding, yet it remains challenging owing to structural ambiguity, partial visibility, and noise. We address these issues by proposing Confidence Estimation under Global Context (CEGC), a unified, confidence-driven framework for robust partial 3D registration. CEGC enables accurate alignment in complex scenes by jointly modeling overlap confidence and correspondence reliability within a shared global context. Specifically, the hybrid overlap confidence estimation module integrates semantic descriptors and geometric similarity to detect overlapping regions and suppress outliers early. The context-aware matching strategy mitigates ambiguity by employing global attention to assign soft confidence scores to correspondences, improving robustness. These scores guide a differentiable weighted singular value decomposition solver to compute precise transformations. This tightly coupled pipeline adaptively down-weights uncertain regions and emphasizes contextually reliable matches. Experiments on ModelNet40, ScanObjectNN, and 7Scenes 3D vision datasets demonstrate that CEGC outperforms state-of-the-art methods in accuracy, robustness, and generalization. Overall, CEGC offers an interpretable and scalable solution to partial point cloud registration under challenging conditions.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"723 ","pages":"Article 122705"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525008382","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Partial point cloud registration is essential for autonomous perception and 3D scene understanding, yet it remains challenging owing to structural ambiguity, partial visibility, and noise. We address these issues by proposing Confidence Estimation under Global Context (CEGC), a unified, confidence-driven framework for robust partial 3D registration. CEGC enables accurate alignment in complex scenes by jointly modeling overlap confidence and correspondence reliability within a shared global context. Specifically, the hybrid overlap confidence estimation module integrates semantic descriptors and geometric similarity to detect overlapping regions and suppress outliers early. The context-aware matching strategy mitigates ambiguity by employing global attention to assign soft confidence scores to correspondences, improving robustness. These scores guide a differentiable weighted singular value decomposition solver to compute precise transformations. This tightly coupled pipeline adaptively down-weights uncertain regions and emphasizes contextually reliable matches. Experiments on ModelNet40, ScanObjectNN, and 7Scenes 3D vision datasets demonstrate that CEGC outperforms state-of-the-art methods in accuracy, robustness, and generalization. Overall, CEGC offers an interpretable and scalable solution to partial point cloud registration under challenging conditions.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.