Abdulmohsen Daham Alruwaili , Shamaila Rani , Abdul Jawad
{"title":"Dynamical stability analysis of modified gravity with various interactions","authors":"Abdulmohsen Daham Alruwaili , Shamaila Rani , Abdul Jawad","doi":"10.1016/j.dark.2025.102097","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dynamical stability of cosmological models within the special case of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity, a modified theory of gravity where non-metricity <span><math><mi>Q</mi></math></span> governs gravitational interactions. We analyze the phase space dynamics of a flat Friedmann–Robertson–Walker (FRW) universe, incorporating three distinct non-linear interaction models between dark energy and dark matter: <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>b</mi><mi>q</mi><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>b</mi><mi>q</mi><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><mfrac><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>3</mn><mi>H</mi><mi>ξ</mi><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>exp</mo><mfenced><mrow><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></mfenced></mrow></math></span>. By deriving autonomous dynamical equations and evaluating critical points, we assess their stability through eigenvalue analysis. The first two models exhibit stable attractor behavior in the quintessence phase for both dust (<span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>) and radiation (<span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span>) scenarios, with all eigenvalues being negative. The third model demonstrates stability across phantom, <span><math><mi>Λ</mi></math></span>CDM, and quintessence phases, with critical points consistently converging to equilibrium states. Our results highlight the role of non-linear interactions in shaping cosmic evolution, offering viable alternatives to explain late-time acceleration without relying solely on dark energy. The findings underscore the robustness of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity in describing cosmological dynamics while providing new insights into the universe’s large-scale structure and evolution.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102097"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002900","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dynamical stability of cosmological models within the special case of gravity, a modified theory of gravity where non-metricity governs gravitational interactions. We analyze the phase space dynamics of a flat Friedmann–Robertson–Walker (FRW) universe, incorporating three distinct non-linear interaction models between dark energy and dark matter: , , and . By deriving autonomous dynamical equations and evaluating critical points, we assess their stability through eigenvalue analysis. The first two models exhibit stable attractor behavior in the quintessence phase for both dust () and radiation () scenarios, with all eigenvalues being negative. The third model demonstrates stability across phantom, CDM, and quintessence phases, with critical points consistently converging to equilibrium states. Our results highlight the role of non-linear interactions in shaping cosmic evolution, offering viable alternatives to explain late-time acceleration without relying solely on dark energy. The findings underscore the robustness of gravity in describing cosmological dynamics while providing new insights into the universe’s large-scale structure and evolution.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.