New Harris Hawks algorithms for the Close-Enough Traveling Salesman Problem

IF 4.3
Tansel Dokeroglu, Deniz Canturk
{"title":"New Harris Hawks algorithms for the Close-Enough Traveling Salesman Problem","authors":"Tansel Dokeroglu,&nbsp;Deniz Canturk","doi":"10.1016/j.iswa.2025.200586","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel application of the Harris Hawks Optimization (HHO) algorithm to the Close-Enough Traveling Salesman Problem (CETSP), a challenging combinatorial optimization problem where circular neighborhoods rather than exact coordinates represent target points. To tackle the CETSP’s spatial complexity and high-dimensional solution space, we develop new HHO algorithms, including a parallel multi-population variant designed using the OpenMP framework. This parallel algorithm allows multiple subpopulations to evolve simultaneously, increasing diversity and computational efficiency, particularly on large-scale and real-time instances. Furthermore, new problem-specific exploration and exploitation operators are introduced, tailored to the CETSP’s geometric structure, enabling better guidance of the search process toward high-quality solutions. A comprehensive empirical evaluation is conducted on 47 benchmark instances, encompassing synthetic problem instances and a real-world robotic welding scenario in automotive manufacturing. The results show that the proposed methods outperform existing state-of-the-art techniques such as Genetic Algorithm (GA), Memetic Algorithm (MA-CETSP) and Variable Neighborhood Search (VNS)-based approaches, achieving 18 new best-known solutions. The experimental findings underline the strong convergence behavior, robustness across diverse problem sizes, and practical applicability of the algorithm. Additionally, the algorithm’s modular and extensible structure leads the way for future adaptations to multi-objective and dynamic versions of CETSP, broadening its relevance for both academic research and industrial deployment.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"28 ","pages":"Article 200586"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325001127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel application of the Harris Hawks Optimization (HHO) algorithm to the Close-Enough Traveling Salesman Problem (CETSP), a challenging combinatorial optimization problem where circular neighborhoods rather than exact coordinates represent target points. To tackle the CETSP’s spatial complexity and high-dimensional solution space, we develop new HHO algorithms, including a parallel multi-population variant designed using the OpenMP framework. This parallel algorithm allows multiple subpopulations to evolve simultaneously, increasing diversity and computational efficiency, particularly on large-scale and real-time instances. Furthermore, new problem-specific exploration and exploitation operators are introduced, tailored to the CETSP’s geometric structure, enabling better guidance of the search process toward high-quality solutions. A comprehensive empirical evaluation is conducted on 47 benchmark instances, encompassing synthetic problem instances and a real-world robotic welding scenario in automotive manufacturing. The results show that the proposed methods outperform existing state-of-the-art techniques such as Genetic Algorithm (GA), Memetic Algorithm (MA-CETSP) and Variable Neighborhood Search (VNS)-based approaches, achieving 18 new best-known solutions. The experimental findings underline the strong convergence behavior, robustness across diverse problem sizes, and practical applicability of the algorithm. Additionally, the algorithm’s modular and extensible structure leads the way for future adaptations to multi-objective and dynamic versions of CETSP, broadening its relevance for both academic research and industrial deployment.
足够近旅行商问题的新Harris Hawks算法
本文介绍了Harris Hawks Optimization (HHO)算法在近距离旅行商问题(CETSP)中的一种新应用,这是一个具有挑战性的组合优化问题,其中圆形邻域而不是精确坐标表示目标点。为了解决CETSP的空间复杂性和高维解空间,我们开发了新的HHO算法,包括使用OpenMP框架设计的并行多种群变体。这种并行算法允许多个子种群同时进化,增加了多样性和计算效率,特别是在大规模和实时实例上。此外,针对CETSP的几何结构,还引入了新的针对特定问题的勘探和开发操作方法,从而更好地指导搜索过程,以获得高质量的解决方案。对47个基准实例进行了全面的实证评估,其中包括汽车制造中的综合问题实例和实际机器人焊接场景。结果表明,所提出的方法优于现有的最先进的技术,如遗传算法(GA),模因算法(MA-CETSP)和基于变量邻域搜索(VNS)的方法,实现了18个新的最知名的解决方案。实验结果强调了该算法的强收敛性、跨不同问题规模的鲁棒性和实际适用性。此外,该算法的模块化和可扩展结构为未来适应多目标和动态版本的CETSP铺平了道路,扩大了其在学术研究和工业部署方面的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信