Patricia Rodriguez-Garcia , Angel A. Juan , Jon A. Martin , David Lopez-Lopez , Josep M. Marco
{"title":"AI-driven Optimization of project portfolios in corporate ecosystems with synergies and strategic factors","authors":"Patricia Rodriguez-Garcia , Angel A. Juan , Jon A. Martin , David Lopez-Lopez , Josep M. Marco","doi":"10.1016/j.eswa.2025.129593","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the optimization of project portfolios in corporate ecosystems by considering both strategic factors and return synergies between projects. We propose a hybrid method that combines machine learning with mathematical programming to address this enhanced form of project portfolio optimization. Unlike traditional approaches, which evaluate projects mainly based on individual risks and returns, our framework considers strategic priorities and the extra value created when projects reinforce each other. Machine learning models predict synergies, while exact optimization ensures consistent portfolio selection under resource and strategic constraints. A numerical proof-of-concept illustrates the methodology. Computational experiments show that portfolios designed with synergy and strategy in mind might achieve a significantly higher performance than portfolios that do not account for project synergies. The paper also examines computational efficiency and scalability, highlighting the approach’s potential for practical application in complex and dynamic corporate ecosystems.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"298 ","pages":"Article 129593"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425032087","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the optimization of project portfolios in corporate ecosystems by considering both strategic factors and return synergies between projects. We propose a hybrid method that combines machine learning with mathematical programming to address this enhanced form of project portfolio optimization. Unlike traditional approaches, which evaluate projects mainly based on individual risks and returns, our framework considers strategic priorities and the extra value created when projects reinforce each other. Machine learning models predict synergies, while exact optimization ensures consistent portfolio selection under resource and strategic constraints. A numerical proof-of-concept illustrates the methodology. Computational experiments show that portfolios designed with synergy and strategy in mind might achieve a significantly higher performance than portfolios that do not account for project synergies. The paper also examines computational efficiency and scalability, highlighting the approach’s potential for practical application in complex and dynamic corporate ecosystems.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.