Rock physics and petrophysical evaluation of diagenetic effects in the Broom Creek CO2 sequestration site

IF 4.6 0 ENERGY & FUELS
Prasad Pothana , Kegang Ling , Richard A. Schultz
{"title":"Rock physics and petrophysical evaluation of diagenetic effects in the Broom Creek CO2 sequestration site","authors":"Prasad Pothana ,&nbsp;Kegang Ling ,&nbsp;Richard A. Schultz","doi":"10.1016/j.geoen.2025.214229","DOIUrl":null,"url":null,"abstract":"<div><div>The Pennsylvanian–Permian Broom Creek Formation, a deep saline aquifer in the Williston Basin, North Dakota, is an important target for large-scale CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> sequestration. Preserving long-term CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage integrity in this reservoir hinges on a systematic assessment of how geological and diagenetic processes modify rock properties. This study investigates the impact of diagenetic alterations on the elastic properties of the Broom Creek sandstone through an integrated rock physics modeling approach. Multi-mineral petrophysical evaluation was conducted using geophysical well logs calibrated with X-ray diffraction and cuttings data. Rock physics models, including the contact cement, soft-sand, and stiff-sand models, were employed to establish diagenetic trends in compressional wave velocity and porosity space. Velocity-porosity trends and mineral volume fractions data were then used to quantify the contributions of contact cement and pore-filling materials to the rock framework. The findings reveal Upper Broom Creek eolian quartz arenite deposits exhibit diagenetic contact cementation by quartz overgrowths and dolomite, which stiffen the rock matrix while preserving porosity and permeability. In the lower, near-shore sandstone intervals of the formation, quartz overgrowths and dolomite cementation persist, but pore-filling anhydrite and clay dominate as non-contact cements. These results provide understanding into the mechanical properties of the reservoir and the role of diagenesis in modifying porosity and stiffness. The study’s outcomes are useful for modeling CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-brine-rock interactions and evaluating the long-term stability and effectiveness of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> sequestration in the Broom Creek Formation.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214229"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Pennsylvanian–Permian Broom Creek Formation, a deep saline aquifer in the Williston Basin, North Dakota, is an important target for large-scale CO2 sequestration. Preserving long-term CO2 storage integrity in this reservoir hinges on a systematic assessment of how geological and diagenetic processes modify rock properties. This study investigates the impact of diagenetic alterations on the elastic properties of the Broom Creek sandstone through an integrated rock physics modeling approach. Multi-mineral petrophysical evaluation was conducted using geophysical well logs calibrated with X-ray diffraction and cuttings data. Rock physics models, including the contact cement, soft-sand, and stiff-sand models, were employed to establish diagenetic trends in compressional wave velocity and porosity space. Velocity-porosity trends and mineral volume fractions data were then used to quantify the contributions of contact cement and pore-filling materials to the rock framework. The findings reveal Upper Broom Creek eolian quartz arenite deposits exhibit diagenetic contact cementation by quartz overgrowths and dolomite, which stiffen the rock matrix while preserving porosity and permeability. In the lower, near-shore sandstone intervals of the formation, quartz overgrowths and dolomite cementation persist, but pore-filling anhydrite and clay dominate as non-contact cements. These results provide understanding into the mechanical properties of the reservoir and the role of diagenesis in modifying porosity and stiffness. The study’s outcomes are useful for modeling CO2-brine-rock interactions and evaluating the long-term stability and effectiveness of CO2 sequestration in the Broom Creek Formation.
Broom Creek CO2封存区成岩作用的岩石物理与岩石物理评价
位于北达科他州威利斯顿盆地的宾夕法尼亚-二叠纪Broom Creek地层是一个深盐水含水层,是大规模二氧化碳封存的重要目标。在这个储层中保持长期二氧化碳储存的完整性取决于对地质和成岩过程如何改变岩石性质的系统评估。本研究通过综合岩石物理建模方法研究了成岩蚀变对Broom Creek砂岩弹性特性的影响。利用地球物理测井资料、x射线衍射和岩屑资料进行了多矿物岩石物理评价。采用岩石物理模型,包括接触水泥、软砂和硬砂模型,建立了纵波速度和孔隙空间的成岩趋势。然后使用速度-孔隙度趋势和矿物体积分数数据来量化接触胶结物和孔隙填充材料对岩石骨架的贡献。结果表明,上Broom Creek风成石英砂岩矿床表现为石英生长体与白云岩的成岩接触胶结作用,使岩石基体变硬,同时保持了孔隙度和渗透率。在地层下部的近岸砂岩层段,石英过度生长和白云岩胶结作用持续存在,但孔隙填充硬石膏和粘土作为非接触胶结物占主导地位。这些结果有助于理解储层的力学性质以及成岩作用对孔隙度和刚度的影响。该研究结果有助于模拟CO2-盐水-岩石相互作用,并评估Broom Creek组CO2封存的长期稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信