{"title":"Sampling of graph signals based on joint time-vertex fractional Fourier transform","authors":"Yu Zhang, Bing-Zhao Li","doi":"10.1016/j.sigpro.2025.110309","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing demand for non-Euclidean data analysis, graph signal processing (GSP) has gained significant attention for its capability to handle complex time-varying data. This paper introduces a novel sampling method based on the joint time-vertex fractional Fourier transform (JFRFT), enhancing signal representation in time–frequency analysis and GSP. The JFRFT sampling theory is established by deriving conditions for the perfect recovery of jointly bandlimited signals, along with an optimal sampling set selection strategy. To further enhance the efficiency of large-scale time-vertex signal processing, the design of localized sampling operators is investigated. Numerical simulations and real data experiments validate the superior performance of the proposed methods in terms of recovery accuracy and computational efficiency, offering new insights into efficient time-varying signal processing.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110309"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004232","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing demand for non-Euclidean data analysis, graph signal processing (GSP) has gained significant attention for its capability to handle complex time-varying data. This paper introduces a novel sampling method based on the joint time-vertex fractional Fourier transform (JFRFT), enhancing signal representation in time–frequency analysis and GSP. The JFRFT sampling theory is established by deriving conditions for the perfect recovery of jointly bandlimited signals, along with an optimal sampling set selection strategy. To further enhance the efficiency of large-scale time-vertex signal processing, the design of localized sampling operators is investigated. Numerical simulations and real data experiments validate the superior performance of the proposed methods in terms of recovery accuracy and computational efficiency, offering new insights into efficient time-varying signal processing.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.