Moralization-aware identity fusion for detecting violent radicalization in social media

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ming Yin , Miao Wan , Zihao Lin , Jijiao Jiang
{"title":"Moralization-aware identity fusion for detecting violent radicalization in social media","authors":"Ming Yin ,&nbsp;Miao Wan ,&nbsp;Zihao Lin ,&nbsp;Jijiao Jiang","doi":"10.1016/j.ipm.2025.104413","DOIUrl":null,"url":null,"abstract":"<div><div>Most extremists use social media to spread radical ideologies. Existing methods for detecting violent radicalization primarily depend on superficial radicalization characteristics from user content or interactions, which fail to capture the role of morally-driven emotional shifts that underpin radicalization. These approaches overlook the dynamic convergence of moral emotions—a key facilitator of identity transformation and group allegiance. This paper proposes a novel property-specific method that incorporates moral frame, which is a systematic structure of moral reasoning rooted in foundational values such as care/harm, fairness/cheating, loyalty/betrayal, authority/subversion, and purity/degradation to model and fuse moralized identities for detecting violent radicalization. Specifically, it constructs a moral frame model integrated with user profiles to generate enhanced moralized representations, while an innovative moral identity fusion module employs heterogeneous graph neural networks to capture group moral homogeneity. A self-supervised Relational Graph Convolutional Networks (R-GCNs) clusters similar nodes to improve feature space discrimination, enabling effective violent radicalization detection through multi-module collaboration. Our experiments demonstrate significant performance across all metrics. On the moral foundation dataset, our method achieves 62.40 % accuracy, with 60.97 % macro F1 and 63.89 % weighted F1-scores, outperforming all baselines. Evaluation on datasets (340,310 tweets from Twitter; 188,358 posts from Gab) confirms the method’s detection performance. Case studies further validate its ability through moral convergence and social relationship patterns.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104413"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325003541","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Most extremists use social media to spread radical ideologies. Existing methods for detecting violent radicalization primarily depend on superficial radicalization characteristics from user content or interactions, which fail to capture the role of morally-driven emotional shifts that underpin radicalization. These approaches overlook the dynamic convergence of moral emotions—a key facilitator of identity transformation and group allegiance. This paper proposes a novel property-specific method that incorporates moral frame, which is a systematic structure of moral reasoning rooted in foundational values such as care/harm, fairness/cheating, loyalty/betrayal, authority/subversion, and purity/degradation to model and fuse moralized identities for detecting violent radicalization. Specifically, it constructs a moral frame model integrated with user profiles to generate enhanced moralized representations, while an innovative moral identity fusion module employs heterogeneous graph neural networks to capture group moral homogeneity. A self-supervised Relational Graph Convolutional Networks (R-GCNs) clusters similar nodes to improve feature space discrimination, enabling effective violent radicalization detection through multi-module collaboration. Our experiments demonstrate significant performance across all metrics. On the moral foundation dataset, our method achieves 62.40 % accuracy, with 60.97 % macro F1 and 63.89 % weighted F1-scores, outperforming all baselines. Evaluation on datasets (340,310 tweets from Twitter; 188,358 posts from Gab) confirms the method’s detection performance. Case studies further validate its ability through moral convergence and social relationship patterns.
用于检测社交媒体中暴力激进化的道德意识身份融合
大多数极端分子利用社交媒体传播激进的意识形态。现有的检测暴力激进化的方法主要依赖于来自用户内容或互动的表面激进化特征,这无法捕捉到支持激进化的道德驱动的情感转变的作用。这些方法忽略了道德情感的动态聚合——这是身份转换和群体忠诚的关键促进者。本文提出了一种新的属性特定方法,该方法结合了道德框架,这是一种基于基本价值观的道德推理系统结构,如关心/伤害,公平/欺骗,忠诚/背叛,权威/颠覆和纯洁/堕落,以模拟和融合道德身份,以检测暴力激进化。具体而言,它构建了一个与用户档案集成的道德框架模型来生成增强的道德表征,而一个创新的道德身份融合模块使用异构图神经网络来捕获群体道德同质性。自监督关系图卷积网络(R-GCNs)聚类相似节点以提高特征空间判别,通过多模块协作实现有效的暴力激进化检测。我们的实验证明了所有指标的显著性能。在道德基础数据集上,我们的方法达到了62.40%的准确率,其中宏观F1得分为60.97%,加权F1得分为63.89%,优于所有基线。对数据集(来自Twitter的340,310条tweet;来自Gab的188,358条tweet)的评估证实了该方法的检测性能。案例研究通过道德趋同和社会关系模式进一步验证了其能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信