Enhancing neural topic modeling for social media text via semantic bag of word clusters and log-domain Sinkhorn transport

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yi Sun, Junhao Zhao, Haoran Xu, Ronghua Zhang, Changzheng Liu, Limengzi Yuan
{"title":"Enhancing neural topic modeling for social media text via semantic bag of word clusters and log-domain Sinkhorn transport","authors":"Yi Sun,&nbsp;Junhao Zhao,&nbsp;Haoran Xu,&nbsp;Ronghua Zhang,&nbsp;Changzheng Liu,&nbsp;Limengzi Yuan","doi":"10.1016/j.ipm.2025.104411","DOIUrl":null,"url":null,"abstract":"<div><div>Topic modeling has been widely applied to analyze text data from social media platforms. Under this scenario, traditional Neural Topic Models (NTMs) encounter three primary challenges: (1) initial text representation; (2) the long-tail nature of topic distributions in social network texts; (3) approximation of Optimal Transport. Motivated by these challenges, we propose an end-to-end solution spanning from text representation to topic modeling.</div><div>First, we propose SBoWC, a novel text representation method that performs dimensionality reduction while absorbing semantic information through base terms, achieved by combining word embeddings with clustering statistics. Subsequently, we propose GSWTM, a Wasserstein-based autoencoder topic model that fits the long-tail topic distribution in social network texts via Gamma priors and innovatively employs log-domain Sinkhorn to approximate Optimal Transport.</div><div>Ablation studies demonstrate the transferability and effectiveness of SBoWC in text representation. GSWTM demonstrates significantly better performance than baselines in TU, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>, and the comprehensive metrics TQ across four real social network datasets of varying sizes. The log-domain Sinkhorn approximation exhibits excellent stability, allowing the regularization parameter <span><math><mi>ϵ</mi></math></span> to be reduced to 0.1–0.01, thereby approaching the original Optimal Transport.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104411"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325003528","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Topic modeling has been widely applied to analyze text data from social media platforms. Under this scenario, traditional Neural Topic Models (NTMs) encounter three primary challenges: (1) initial text representation; (2) the long-tail nature of topic distributions in social network texts; (3) approximation of Optimal Transport. Motivated by these challenges, we propose an end-to-end solution spanning from text representation to topic modeling.
First, we propose SBoWC, a novel text representation method that performs dimensionality reduction while absorbing semantic information through base terms, achieved by combining word embeddings with clustering statistics. Subsequently, we propose GSWTM, a Wasserstein-based autoencoder topic model that fits the long-tail topic distribution in social network texts via Gamma priors and innovatively employs log-domain Sinkhorn to approximate Optimal Transport.
Ablation studies demonstrate the transferability and effectiveness of SBoWC in text representation. GSWTM demonstrates significantly better performance than baselines in TU, CV, and the comprehensive metrics TQ across four real social network datasets of varying sizes. The log-domain Sinkhorn approximation exhibits excellent stability, allowing the regularization parameter ϵ to be reduced to 0.1–0.01, thereby approaching the original Optimal Transport.
利用聚类语义包和对数域Sinkhorn传输增强社交媒体文本的神经主题建模
话题建模已被广泛应用于社交媒体平台的文本数据分析。在这种情况下,传统的神经主题模型(ntm)面临三个主要挑战:(1)初始文本表示;(2)社交网络文本中话题分布的长尾特征;(3)最优运输近似。在这些挑战的激励下,我们提出了从文本表示到主题建模的端到端解决方案。首先,我们提出了一种新的文本表示方法SBoWC,该方法将词嵌入与聚类统计相结合,在通过基本术语吸收语义信息的同时进行降维。随后,我们提出了基于wasserstein的自编码器主题模型GSWTM,该模型通过Gamma先验拟合社交网络文本中的长尾主题分布,并创新地使用对数域Sinkhorn来近似最优传输。消融研究证明了SBoWC在文本表示中的可移植性和有效性。在四个不同规模的真实社交网络数据集上,GSWTM在TU、CV和综合指标TQ方面的表现明显优于基线。对数域Sinkhorn近似具有优异的稳定性,允许正则化参数λ降至0.1-0.01,从而接近原始的最优传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信