{"title":"Stability of positive radial steady states for the parabolic Hénon–Lane–Emden system","authors":"Daniel Devine , Paschalis Karageorgis","doi":"10.1016/j.na.2025.113945","DOIUrl":null,"url":null,"abstract":"<div><div>When it comes to the nonlinear heat equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span>, the stability of positive radial steady states in the supercritical case was established in the classical paper by Gui, Ni and Wang. We extend this result to systems of reaction–diffusion equations by studying the positive radial steady states of the parabolic Hénon–Lane–Emden system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi></mtd><mtd><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mi>q</mi><mo>></mo><mn>1</mn></mrow></math></span>. Assume that <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span> lies either on or above the Joseph–Lundgren critical curve which arose in the work of Chen, Dupaigne and Ghergu. Then all positive radial steady states have the same asymptotic behavior at infinity, and they are all stable solutions of the parabolic Hénon–Lane–Emden system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113945"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2500197X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
When it comes to the nonlinear heat equation , the stability of positive radial steady states in the supercritical case was established in the classical paper by Gui, Ni and Wang. We extend this result to systems of reaction–diffusion equations by studying the positive radial steady states of the parabolic Hénon–Lane–Emden system where , and . Assume that lies either on or above the Joseph–Lundgren critical curve which arose in the work of Chen, Dupaigne and Ghergu. Then all positive radial steady states have the same asymptotic behavior at infinity, and they are all stable solutions of the parabolic Hénon–Lane–Emden system in .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.