Pierre Aime Feulefack , Emmanuel Wend-Benedo Zongo
{"title":"Eigenvalues of nonlinear (p,q)-fractional Laplace operator under nonlocal Neumann conditions","authors":"Pierre Aime Feulefack , Emmanuel Wend-Benedo Zongo","doi":"10.1016/j.na.2025.113949","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate on a bounded open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with smooth boundary, an eigenvalue problem involving a sum of nonlocal operators <span><math><mrow><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> and subject to the corresponding homogeneous nonlocal <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Neumann boundary condition. A careful analysis of the considered problem leads us to a complete description of the set of eigenvalues as being the precise interval <span><math><mrow><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>∪</mo><mrow><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> is the first nonzero eigenvalue of the homogeneous fractional <span><math><mi>q</mi></math></span>-Laplacian under nonlocal <span><math><mi>q</mi></math></span>-Neumann boundary condition. Due to the nonlocal feature of the operators appearing in the equations, some purely nonlocal situations occur and bring in a difference in the study of nonlocal problems compared to local ones. Furthermore, we establish that every eigenfunctions is globally bounded.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113949"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate on a bounded open set of with smooth boundary, an eigenvalue problem involving a sum of nonlocal operators with , and subject to the corresponding homogeneous nonlocal -Neumann boundary condition. A careful analysis of the considered problem leads us to a complete description of the set of eigenvalues as being the precise interval , where is the first nonzero eigenvalue of the homogeneous fractional -Laplacian under nonlocal -Neumann boundary condition. Due to the nonlocal feature of the operators appearing in the equations, some purely nonlocal situations occur and bring in a difference in the study of nonlocal problems compared to local ones. Furthermore, we establish that every eigenfunctions is globally bounded.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.