{"title":"Existence and nonexistence of solutions for weighted elliptic inequalities involving gradient terms","authors":"Roberta Filippucci , Yadong Zheng","doi":"10.1016/j.na.2025.113951","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove existence and nonexistence theorems for positive solutions of elliptic inequalities for general quasilinear operators, including <span><math><mi>m</mi></math></span>-Laplacian, mean curvature and generalized mean curvature operator, in the entire <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a reaction involving power type gradient terms and positive weights, possibly singular or degenerate. A complete picture for the exponents involved is given. The proof technique is based on cumbersome integral a priori estimates, in the spirit of the nonlinear capacity method. No maximum principle or growth conditions at infinity for the solutions are required.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113951"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we prove existence and nonexistence theorems for positive solutions of elliptic inequalities for general quasilinear operators, including -Laplacian, mean curvature and generalized mean curvature operator, in the entire with a reaction involving power type gradient terms and positive weights, possibly singular or degenerate. A complete picture for the exponents involved is given. The proof technique is based on cumbersome integral a priori estimates, in the spirit of the nonlinear capacity method. No maximum principle or growth conditions at infinity for the solutions are required.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.