Lichun Yang , Jianghao Wu , Hongguang Li , Chunlei Liu , Shize Wei
{"title":"Joint airport runway segmentation and line detection via multi-task learning for intelligent visual navigation","authors":"Lichun Yang , Jianghao Wu , Hongguang Li , Chunlei Liu , Shize Wei","doi":"10.1016/j.jvcir.2025.104589","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel multi-task learning framework for joint airport runway segmentation and line detection, addressing two key challenges in aircraft visual navigation: (1) edge detection for sub-5 %-pixel targets and (2) computational inefficiencies in existing methods. Our contributions include: (i) ENecNet, a lightweight yet powerful encoder that boosts small-target detection IoU by 15.5 % through optimized channel expansion and architectural refinement; (ii) a dual-decoder design with task-specific branches for area segmentation and edge line detection; and (iii) a dynamically weighted multi-task loss function to ensure balanced training. Extensive evaluations on the RDD5000 dataset show state-of-the-art performance with 0.9709 segmentation IoU and 0.6256 line detection IoU at 38.4 FPS. The framework also demonstrates robust performance (0.9513–0.9664 IoU) across different airports and challenging conditions such as nighttime, smog, and mountainous terrain, proving its suitability for real-time onboard navigation systems.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"112 ","pages":"Article 104589"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325002032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel multi-task learning framework for joint airport runway segmentation and line detection, addressing two key challenges in aircraft visual navigation: (1) edge detection for sub-5 %-pixel targets and (2) computational inefficiencies in existing methods. Our contributions include: (i) ENecNet, a lightweight yet powerful encoder that boosts small-target detection IoU by 15.5 % through optimized channel expansion and architectural refinement; (ii) a dual-decoder design with task-specific branches for area segmentation and edge line detection; and (iii) a dynamically weighted multi-task loss function to ensure balanced training. Extensive evaluations on the RDD5000 dataset show state-of-the-art performance with 0.9709 segmentation IoU and 0.6256 line detection IoU at 38.4 FPS. The framework also demonstrates robust performance (0.9513–0.9664 IoU) across different airports and challenging conditions such as nighttime, smog, and mountainous terrain, proving its suitability for real-time onboard navigation systems.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.