Knowledge NeRF: Few-shot novel view synthesis for dynamic articulated objects

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenxiao Cai , Xinyue Lei , Xinyu He , Junming Leo Chen , Yuzhi Hao , Yangang Wang
{"title":"Knowledge NeRF: Few-shot novel view synthesis for dynamic articulated objects","authors":"Wenxiao Cai ,&nbsp;Xinyue Lei ,&nbsp;Xinyu He ,&nbsp;Junming Leo Chen ,&nbsp;Yuzhi Hao ,&nbsp;Yangang Wang","doi":"10.1016/j.jvcir.2025.104586","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce Knowledge NeRF, a few-shot framework for novel-view synthesis of dynamic articulated objects. Conventional dynamic-NeRF methods learn a deformation field from long monocular videos, yet they degrade sharply when only sparse observations are available. Our key idea is to reuse a high-quality, pose-specific NeRF as a knowledge base and learn a lightweight projection module for each new pose that maps 3-D points in the current state to their canonical counterparts. By freezing the pretrained radiance field and training only this module with five input images, Knowledge NeRF renders novel views whose fidelity matches a NeRF trained with one hundred images. Experimental results demonstrate the effectiveness of our method in reconstructing dynamic 3D scenes with 5 input images in one state. Knowledge NeRF is a new pipeline and a promising solution for novel view synthesis in dynamic articulated objects. The data and implementation will be publicly available at: <span><span>https://github.com/RussRobin/Knowledge_NeRF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"112 ","pages":"Article 104586"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325002007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Knowledge NeRF, a few-shot framework for novel-view synthesis of dynamic articulated objects. Conventional dynamic-NeRF methods learn a deformation field from long monocular videos, yet they degrade sharply when only sparse observations are available. Our key idea is to reuse a high-quality, pose-specific NeRF as a knowledge base and learn a lightweight projection module for each new pose that maps 3-D points in the current state to their canonical counterparts. By freezing the pretrained radiance field and training only this module with five input images, Knowledge NeRF renders novel views whose fidelity matches a NeRF trained with one hundred images. Experimental results demonstrate the effectiveness of our method in reconstructing dynamic 3D scenes with 5 input images in one state. Knowledge NeRF is a new pipeline and a promising solution for novel view synthesis in dynamic articulated objects. The data and implementation will be publicly available at: https://github.com/RussRobin/Knowledge_NeRF.
知识NeRF:动态铰接对象的少镜头新视图合成
我们介绍了Knowledge NeRF,这是一个用于动态铰接对象的新视图合成的几个镜头框架。传统的动态- nerf方法从长单目视频中学习变形场,然而当只有稀疏观测时,它们的性能会急剧下降。我们的主要想法是重用一个高质量的、特定姿势的NeRF作为知识库,并为每个新姿势学习一个轻量级的投影模块,该模块将当前状态下的3-D点映射到它们的规范对应点。通过冻结预训练的亮度场并仅用五个输入图像训练该模块,Knowledge NeRF呈现出新颖的视图,其保真度与使用100个图像训练的NeRF相匹配。实验结果表明,该方法可以有效地重建5幅输入图像在同一状态下的动态三维场景。知识NeRF是一种新的管道,是动态铰接对象中新颖视图合成的一种很有前景的解决方案。数据和实施将在https://github.com/RussRobin/Knowledge_NeRF上公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信