Sylvester-preconditioned adaptive-rank implicit time integrators for advection-diffusion equations with variable coefficients

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hamad El Kahza , Jing-Mei Qiu , Luis Chacón , William Taitano
{"title":"Sylvester-preconditioned adaptive-rank implicit time integrators for advection-diffusion equations with variable coefficients","authors":"Hamad El Kahza ,&nbsp;Jing-Mei Qiu ,&nbsp;Luis Chacón ,&nbsp;William Taitano","doi":"10.1016/j.jcp.2025.114377","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the adaptive-rank integration of multi-dimensional time-dependent advection-diffusion partial differential equations (PDEs) with variable coefficients. We employ a standard finite-difference method for spatial discretization coupled with high-order diagonally implicit Runge-Kutta temporal schemes. The discrete equation is a generalized Sylvester equation (GSE), which we solve with a projection-based adaptive-rank algorithm structured around two key strategies: (i) constructing dimension-wise subspaces using a novel atypical extended Krylov strategy, and (ii) efficiently solving the basis coefficient matrix with a preconditioned GMRES solver. The low-rank decomposition is performed in 2D using SVD and with high-order SVD (HOSVD) in 3D to represent the tensor in a compressed Tucker format. For <span><math><mi>d</mi></math></span>-dimensional problems (here, <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3), the computational complexity and memory storage of the approach are found numerically to scale as <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><msup><mi>r</mi><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mi>r</mi><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>N</mi><mi>r</mi><mo>)</mo></mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mi>r</mi><mi>d</mi></msup><mo>)</mo></mrow></mrow></math></span>, respectively, with <span><math><mi>N</mi></math></span> the one-dimensional resolution and <span><math><mi>r</mi></math></span> the maximal rank during the Krylov iteration (which we find to be largely independent of <span><math><mi>N</mi></math></span> on our numerical examples). We present numerical examples that illustrate the advertised properties of the algorithm.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"543 ","pages":"Article 114377"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500659X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the adaptive-rank integration of multi-dimensional time-dependent advection-diffusion partial differential equations (PDEs) with variable coefficients. We employ a standard finite-difference method for spatial discretization coupled with high-order diagonally implicit Runge-Kutta temporal schemes. The discrete equation is a generalized Sylvester equation (GSE), which we solve with a projection-based adaptive-rank algorithm structured around two key strategies: (i) constructing dimension-wise subspaces using a novel atypical extended Krylov strategy, and (ii) efficiently solving the basis coefficient matrix with a preconditioned GMRES solver. The low-rank decomposition is performed in 2D using SVD and with high-order SVD (HOSVD) in 3D to represent the tensor in a compressed Tucker format. For d-dimensional problems (here, d=2 or 3), the computational complexity and memory storage of the approach are found numerically to scale as O(Nr2)+O(rd+1) and O(Nr)+O(rd), respectively, with N the one-dimensional resolution and r the maximal rank during the Krylov iteration (which we find to be largely independent of N on our numerical examples). We present numerical examples that illustrate the advertised properties of the algorithm.
变系数平流扩散方程的sylvester -预条件自适应秩隐式时间积分器
研究了变系数多维时变平流扩散偏微分方程的自适应秩积分问题。我们采用标准有限差分方法耦合高阶对角隐式龙格-库塔时间格式进行空间离散化。离散方程是一个广义Sylvester方程(GSE),我们使用基于投影的自适应秩算法求解该方程,该算法围绕两个关键策略构建:(i)使用一种新的非典型扩展Krylov策略构建维度方向子空间,以及(ii)使用预条件GMRES求解器有效求解基系数矩阵。在二维中使用奇异值分解(SVD)进行低秩分解,在三维中使用高阶奇异值分解(HOSVD)以压缩的Tucker格式表示张量。对于d维问题(这里,d=2或3),该方法的计算复杂度和内存存储分别在数值上缩放为O(Nr2)+O(rd+1)和O(Nr)+O(rd),其中N为一维分辨率,r为Krylov迭代期间的最大秩(在我们的数值示例中,我们发现这在很大程度上与N无关)。我们给出了数值例子来说明该算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信