Stochastic operator learning for chemistry in non-equilibrium flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mridula Kuppa , Roger Ghanem , Marco Panesi
{"title":"Stochastic operator learning for chemistry in non-equilibrium flows","authors":"Mridula Kuppa ,&nbsp;Roger Ghanem ,&nbsp;Marco Panesi","doi":"10.1016/j.jcp.2025.114381","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a novel framework that combines physically consistent model error characterization with spectral expansions-based operator learning for reduced-order models of non-equilibrium chemical kinetics, ultimately leading to a stochastic operator learning approach. By leveraging the Bayesian framework, we identify and infer sources of model error and parametric uncertainty within the coarse-graining methodology (CGM) across a range of initial conditions. The model error is embedded into the chemical kinetics model to ensure that its propagation to quantities of interest remains physically consistent. For operator learning, we develop a methodology that separates temporal dynamics from the parameters governing initial conditions, model error, and parametric uncertainty. Karhunen-Loève expansion (KLE) is employed to capture temporal dynamics, yielding temporal modes, while polynomial chaos expansion (PCE) is subsequently used to map model error and input parameters to the KLE coefficients. This proposed model offers three significant advantages: i) Separating the temporal dynamics from other inputs ensures the stability of the chemistry surrogate when coupled with fluid solvers; ii) The framework fully accounts for model and parametric uncertainty, enabling robust probabilistic predictions; iii) The surrogate model is highly interpretable, with visualizable temporal modes and a PCE component that facilitates the analytical calculation of sensitivity indices, allowing for the ranking of input parameter influence. We apply this framework to the <span><math><mrow><msub><mrow><mi>O</mi></mrow><mn>2</mn></msub><mspace></mspace><mo>−</mo><mspace></mspace><mrow><mi>O</mi></mrow></mrow></math></span> chemistry system under hypersonic flight conditions, validating it in both a 0-D adiabatic reactor and coupled simulations with a fluid solver in a 1-D normal shock test case. Results demonstrate that the surrogate is stable during time integration, delivers physically consistent probabilistic predictions accounting for both model and parametric uncertainty, and achieves a maximum relative error below 10 %. This work represents a significant step forward in enabling probabilistic predictions of non-equilibrium chemical kinetics within coupled fluid solvers, offering a physically accurate approach for hypersonic flow predictions.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"543 ","pages":"Article 114381"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006631","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel framework that combines physically consistent model error characterization with spectral expansions-based operator learning for reduced-order models of non-equilibrium chemical kinetics, ultimately leading to a stochastic operator learning approach. By leveraging the Bayesian framework, we identify and infer sources of model error and parametric uncertainty within the coarse-graining methodology (CGM) across a range of initial conditions. The model error is embedded into the chemical kinetics model to ensure that its propagation to quantities of interest remains physically consistent. For operator learning, we develop a methodology that separates temporal dynamics from the parameters governing initial conditions, model error, and parametric uncertainty. Karhunen-Loève expansion (KLE) is employed to capture temporal dynamics, yielding temporal modes, while polynomial chaos expansion (PCE) is subsequently used to map model error and input parameters to the KLE coefficients. This proposed model offers three significant advantages: i) Separating the temporal dynamics from other inputs ensures the stability of the chemistry surrogate when coupled with fluid solvers; ii) The framework fully accounts for model and parametric uncertainty, enabling robust probabilistic predictions; iii) The surrogate model is highly interpretable, with visualizable temporal modes and a PCE component that facilitates the analytical calculation of sensitivity indices, allowing for the ranking of input parameter influence. We apply this framework to the O2O chemistry system under hypersonic flight conditions, validating it in both a 0-D adiabatic reactor and coupled simulations with a fluid solver in a 1-D normal shock test case. Results demonstrate that the surrogate is stable during time integration, delivers physically consistent probabilistic predictions accounting for both model and parametric uncertainty, and achieves a maximum relative error below 10 %. This work represents a significant step forward in enabling probabilistic predictions of non-equilibrium chemical kinetics within coupled fluid solvers, offering a physically accurate approach for hypersonic flow predictions.
非平衡流中化学的随机算子学习
这项工作引入了一个新的框架,将物理一致的模型误差表征与基于谱扩展的算子学习相结合,用于非平衡化学动力学的降阶模型,最终导致随机算子学习方法。通过利用贝叶斯框架,我们在一系列初始条件下识别和推断粗粒度方法(CGM)中的模型误差和参数不确定性的来源。模型误差被嵌入到化学动力学模型中,以确保其传播到感兴趣的数量在物理上保持一致。对于操作员学习,我们开发了一种将时间动态与控制初始条件、模型误差和参数不确定性的参数分离的方法。采用karhunen - lo展开(KLE)捕捉时间动力学,得到时间模态,随后采用多项式混沌展开(PCE)将模型误差和输入参数映射到KLE系数。该模型具有三个显著的优点:i)将时间动态与其他输入分离,确保了当与流体求解器耦合时化学替代的稳定性;ii)该框架充分考虑了模型和参数的不确定性,实现了稳健的概率预测;iii)代理模型具有高度可解释性,具有可视化的时间模式和PCE组件,有助于敏感性指数的分析计算,从而对输入参数的影响进行排序。我们将该框架应用于高超声速飞行条件下的O2−O化学系统,在0-D绝热反应堆和1-D正常冲击试验用例的流体求解器耦合模拟中对其进行了验证。结果表明,代理在时间积分期间是稳定的,提供了物理上一致的概率预测,考虑到模型和参数的不确定性,并实现了10%以下的最大相对误差。这项工作代表了在耦合流体求解器中实现非平衡化学动力学概率预测的重要一步,为高超声速流动预测提供了物理上准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信