Spectral norm-based sparse arrays design: A matrix completion perspective

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yi Li, Weijie Xia, Lingzhi Zhu, Jianjiang Zhou
{"title":"Spectral norm-based sparse arrays design: A matrix completion perspective","authors":"Yi Li,&nbsp;Weijie Xia,&nbsp;Lingzhi Zhu,&nbsp;Jianjiang Zhou","doi":"10.1016/j.sigpro.2025.110310","DOIUrl":null,"url":null,"abstract":"<div><div>A key challenge in sparse linear arrays (SLAs) is that only partial elements can be observed in a single snapshot. To address this, we employ low-rank Toeplitz matrix completion to estimate missing entries. This method is integrated into a nuclear norm minimization framework tailored for SLA sampling patterns, which directly governs the matrix recovery quality. From this perspective, we establish an empirical performance guarantee linked to the spectral norm of the sampling matrix, providing a quantitative metric for sparse array design. Arrays designed with lower spectral norms demonstrate superior recovery performance. Simulations validate this correlation and suggest using the spectral norm as a preprocessing tool for array screening, substantially reducing design iterations.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110310"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge in sparse linear arrays (SLAs) is that only partial elements can be observed in a single snapshot. To address this, we employ low-rank Toeplitz matrix completion to estimate missing entries. This method is integrated into a nuclear norm minimization framework tailored for SLA sampling patterns, which directly governs the matrix recovery quality. From this perspective, we establish an empirical performance guarantee linked to the spectral norm of the sampling matrix, providing a quantitative metric for sparse array design. Arrays designed with lower spectral norms demonstrate superior recovery performance. Simulations validate this correlation and suggest using the spectral norm as a preprocessing tool for array screening, substantially reducing design iterations.
基于谱范数的稀疏阵列设计:矩阵补全视角
稀疏线性阵列(sla)的一个关键挑战是,在单个快照中只能观察到部分元素。为了解决这个问题,我们使用低秩Toeplitz矩阵补全来估计缺失条目。该方法集成到为SLA采样模式量身定制的核规范最小化框架中,该框架直接控制矩阵恢复质量。从这个角度出发,我们建立了与采样矩阵谱范数相关的经验性能保证,为稀疏阵列设计提供了定量度量。采用低谱范数设计的阵列显示出优越的恢复性能。模拟验证了这种相关性,并建议使用谱范数作为阵列筛选的预处理工具,大大减少了设计迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信