In the shadow of silence: Modelling missing data in the dark networks of crime and terrorists

IF 2.4 2区 社会学 Q1 ANTHROPOLOGY
Jonathan Januar , H. Colin Gallagher , Johan Koskinen
{"title":"In the shadow of silence: Modelling missing data in the dark networks of crime and terrorists","authors":"Jonathan Januar ,&nbsp;H. Colin Gallagher ,&nbsp;Johan Koskinen","doi":"10.1016/j.socnet.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>The clandestine nature of covert networks makes reliable data difficult to obtain and leads to concerns with missing data. We explore the use of network models to represent missingness mechanisms. Exponential random graph models provide a flexible way of parameterising departures from conventional missingness assumptions and data management practices. We demonstrate the effects of model specification, true network structure, and different not-at-random missingness mechanisms across six empirical covert networks. Our framework for modelling realistic missingness mechanisms investigates potential inferential pitfalls, evaluates decisions in collecting data, and offers the opportunity to incorporate non-random missingness into the estimation of network generating mechanisms.</div></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"84 ","pages":"Pages 147-163"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873325000656","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The clandestine nature of covert networks makes reliable data difficult to obtain and leads to concerns with missing data. We explore the use of network models to represent missingness mechanisms. Exponential random graph models provide a flexible way of parameterising departures from conventional missingness assumptions and data management practices. We demonstrate the effects of model specification, true network structure, and different not-at-random missingness mechanisms across six empirical covert networks. Our framework for modelling realistic missingness mechanisms investigates potential inferential pitfalls, evaluates decisions in collecting data, and offers the opportunity to incorporate non-random missingness into the estimation of network generating mechanisms.
在沉默的阴影中:为犯罪和恐怖分子的黑暗网络中缺失的数据建模
隐蔽网络的秘密性质使得难以获得可靠的数据,并导致对丢失数据的担忧。我们探索使用网络模型来表示缺失机制。指数随机图模型提供了一种灵活的方法来参数化偏离传统的缺失假设和数据管理实践。我们在六个经验隐蔽网络中展示了模型规范、真实网络结构和不同的非随机缺失机制的影响。我们对现实缺失机制建模的框架研究了潜在的推理陷阱,评估了收集数据的决策,并提供了将非随机缺失纳入网络生成机制估计的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Social Networks
Social Networks Multiple-
CiteScore
5.90
自引率
12.90%
发文量
118
期刊介绍: Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信