Facial quality assessment of digital humans: A dual-branch framework integrating morphological harmony and expressive coordination

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Li Xu , Yingjie Zhou , Sitong Liu , Farong Wen , Yu Zhou , Xiaohong Liu , Jie Guo , Yu Wang , Jiezhang Cao
{"title":"Facial quality assessment of digital humans: A dual-branch framework integrating morphological harmony and expressive coordination","authors":"Li Xu ,&nbsp;Yingjie Zhou ,&nbsp;Sitong Liu ,&nbsp;Farong Wen ,&nbsp;Yu Zhou ,&nbsp;Xiaohong Liu ,&nbsp;Jie Guo ,&nbsp;Yu Wang ,&nbsp;Jiezhang Cao","doi":"10.1016/j.displa.2025.103221","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of metaverse technologies, digital humans (DH), as core interactive entities in virtual-physical integrated ecosystems, face unique challenges in their quality assessment frameworks. Existing research predominantly focuses on quantifying natural image distortions but fails to address DH-specific issues such as facial morphological disharmony and expression incoherence. To bridge this gap, we propose a dual-branch quality assessment framework for digital humans: (1) Leveraging medical aesthetic priors, we construct structural features based on facial aesthetic subunits and model temporal dependencies using gated recurrent units, combined with a loss-averse pooling strategy to capture transient severe distortions. (2) We quantify expression coordination through multi-dimensional Action Unit (AU) topology graphs, proposing triple-edge definitions and regressing dynamic distortion levels via graph convolutional networks. Experiments on the multiple THQA datasets demonstrate that our framework significantly outperforms conventional methods in subjective mean opinion score consistency, with the dynamic branch playing a dominant role in performance optimization. This work establishes a quantifiable evaluation standard for DH modeling refinement and real-time rendering.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103221"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of metaverse technologies, digital humans (DH), as core interactive entities in virtual-physical integrated ecosystems, face unique challenges in their quality assessment frameworks. Existing research predominantly focuses on quantifying natural image distortions but fails to address DH-specific issues such as facial morphological disharmony and expression incoherence. To bridge this gap, we propose a dual-branch quality assessment framework for digital humans: (1) Leveraging medical aesthetic priors, we construct structural features based on facial aesthetic subunits and model temporal dependencies using gated recurrent units, combined with a loss-averse pooling strategy to capture transient severe distortions. (2) We quantify expression coordination through multi-dimensional Action Unit (AU) topology graphs, proposing triple-edge definitions and regressing dynamic distortion levels via graph convolutional networks. Experiments on the multiple THQA datasets demonstrate that our framework significantly outperforms conventional methods in subjective mean opinion score consistency, with the dynamic branch playing a dominant role in performance optimization. This work establishes a quantifiable evaluation standard for DH modeling refinement and real-time rendering.
数字人类面部质量评估:融合形态和谐与表达协调的双分支框架
随着虚拟世界技术的快速发展,数字人类作为虚拟-物理集成生态系统中的核心互动实体,在其质量评估框架中面临着独特的挑战。现有的研究主要集中在量化自然图像畸变,但未能解决面部形态不和谐和表情不连贯等特定问题。为了弥补这一差距,我们提出了一个数字人类的双分支质量评估框架:(1)利用医学美学先验,我们构建基于面部美学亚单位的结构特征,并使用门控循环单元建模时间依赖性,结合避免损失的池化策略来捕获短暂的严重扭曲。(2)通过多维动作单元(AU)拓扑图量化表达协调,提出三边定义,并通过图卷积网络回归动态失真水平。在多个THQA数据集上的实验表明,我们的框架在主观平均意见评分一致性方面明显优于传统方法,其中动态分支在性能优化方面发挥了主导作用。本工作为DH建模精细化和实时渲染建立了可量化的评价标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信