Simultaneous in-situ reduction and foaming synthesis of magnetic MXene/rGO porous films for enhanced electromagnetic interference shielding

Hongli Cheng , Yajun Xue , Ming Huang , Bing Zhou , Yuezhan Feng , Liwei Mi , Xianhu Liu , Chuntai Liu
{"title":"Simultaneous in-situ reduction and foaming synthesis of magnetic MXene/rGO porous films for enhanced electromagnetic interference shielding","authors":"Hongli Cheng ,&nbsp;Yajun Xue ,&nbsp;Ming Huang ,&nbsp;Bing Zhou ,&nbsp;Yuezhan Feng ,&nbsp;Liwei Mi ,&nbsp;Xianhu Liu ,&nbsp;Chuntai Liu","doi":"10.1016/j.adna.2025.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight, porous and conductive films represent a promising solution for effective electromagnetic interference (EMI) shielding. Nevertheless, the simultaneous integration of porous architectures and electromagnetic synergistic components remains a significant challenge. This work presents an innovative fabrication strategy that combines sequential vacuum-assisted filtration with <em>in-situ</em> hydrazine hydrate-mediated foaming. This approach simultaneously constructs a 3D porous architecture while reducing nickel precursors to magnetic nanoparticles, ultimately yielding lightweight MXene/rGO-Ni (fMG-Ni) porous films with tunable electromagnetic properties. The engineered porous architecture facilitates multiple internal reflections and scattering of electromagnetic waves, while the synergistic combination of conductive MXene/rGO and magnetic Ni components induces complementary dielectric and magnetic loss mechanisms. These combined effects endow the porous film with effective EMI shielding properties. The optimized fMG-Ni porous film with an ultralow density of 0.246 g/cm³ and a minimal thickness of 163 μm exhibits an outstanding electrical conductivity of 1062.81 S/m and an EMI shielding effectiveness of 37.9 dB in X-band, achieving a high specific shielding efficiency of 9452 dB·cm²·g⁻¹ and long-term stability (94.3 % retention after 5 months). This work establishes a new paradigm for designing ultralight, high-performance EMI shielding materials for next-generation aerospace, flexible electronics and telecommunication applications.</div></div>","PeriodicalId":100034,"journal":{"name":"Advanced Nanocomposites","volume":"2 ","pages":"Pages 217-226"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanocomposites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949944525000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight, porous and conductive films represent a promising solution for effective electromagnetic interference (EMI) shielding. Nevertheless, the simultaneous integration of porous architectures and electromagnetic synergistic components remains a significant challenge. This work presents an innovative fabrication strategy that combines sequential vacuum-assisted filtration with in-situ hydrazine hydrate-mediated foaming. This approach simultaneously constructs a 3D porous architecture while reducing nickel precursors to magnetic nanoparticles, ultimately yielding lightweight MXene/rGO-Ni (fMG-Ni) porous films with tunable electromagnetic properties. The engineered porous architecture facilitates multiple internal reflections and scattering of electromagnetic waves, while the synergistic combination of conductive MXene/rGO and magnetic Ni components induces complementary dielectric and magnetic loss mechanisms. These combined effects endow the porous film with effective EMI shielding properties. The optimized fMG-Ni porous film with an ultralow density of 0.246 g/cm³ and a minimal thickness of 163 μm exhibits an outstanding electrical conductivity of 1062.81 S/m and an EMI shielding effectiveness of 37.9 dB in X-band, achieving a high specific shielding efficiency of 9452 dB·cm²·g⁻¹ and long-term stability (94.3 % retention after 5 months). This work establishes a new paradigm for designing ultralight, high-performance EMI shielding materials for next-generation aerospace, flexible electronics and telecommunication applications.
增强电磁干扰屏蔽性能的MXene/rGO磁性多孔膜的原位还原和发泡合成
轻质、多孔和导电薄膜是有效屏蔽电磁干扰(EMI)的一种很有前途的解决方案。然而,同时集成多孔结构和电磁协同组件仍然是一个重大挑战。这项工作提出了一种创新的制造策略,结合了顺序真空辅助过滤和原位水合肼介导的泡沫。该方法同时构建了3D多孔结构,同时将镍前体还原为磁性纳米颗粒,最终获得具有可调谐电磁性能的轻质MXene/rGO-Ni (fMG-Ni)多孔膜。工程多孔结构促进了电磁波的多次内部反射和散射,而导电MXene/rGO和磁性Ni组件的协同组合则诱导了互补的介电和磁损耗机制。这些综合作用使多孔膜具有有效的电磁干扰屏蔽性能。优化后的fMG-Ni多孔膜的超低密度为0.246 g/cm³ ,最小厚度为163 μm,电导率为1062.81 S/m, x波段EMI屏蔽效率为37.9 dB,比屏蔽效率为9452 dB·cm²·g⁻¹ ,长期稳定性(5个月后保持率为94.3 %)。这项工作为设计用于下一代航空航天、柔性电子和电信应用的超轻、高性能EMI屏蔽材料建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信