Feature selection via risk-bound utility maximization

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chunxu Cao , Qiang Zhang
{"title":"Feature selection via risk-bound utility maximization","authors":"Chunxu Cao ,&nbsp;Qiang Zhang","doi":"10.1016/j.neucom.2025.131572","DOIUrl":null,"url":null,"abstract":"<div><div>The ultimate goal of supervised feature selection is to identify a feature subset that minimizes classification risk. Contemporary methods, however, often rely on heuristic or model-dependent proxy criteria that lack a direct theoretical connection to this fundamental objective. To bridge this gap, we introduce a new feature selection framework that directly optimizes a model-agnostic utility function grounded in statistical learning theory. Our approach defines the utility of a feature subset based on the 1-Wasserstein distance between class-conditional distributions. This metric is theoretically powerful as it can be used to construct an upper bound on the Bayes classification error, allowing us to construct a utility function that is a direct surrogate for this risk bound. We instantiate this framework with a subset search strategy that effectively captures feature interactions by maximizing this risk-bound utility. Extensive experiments on real-world datasets demonstrate that our method not only achieves state-of-the-art classification performance but also demonstrates superior robustness and interpretability, providing a principled and powerful alternative to traditional feature selection methods, confirming our framework’s theoretical soundness.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131572"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022441","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The ultimate goal of supervised feature selection is to identify a feature subset that minimizes classification risk. Contemporary methods, however, often rely on heuristic or model-dependent proxy criteria that lack a direct theoretical connection to this fundamental objective. To bridge this gap, we introduce a new feature selection framework that directly optimizes a model-agnostic utility function grounded in statistical learning theory. Our approach defines the utility of a feature subset based on the 1-Wasserstein distance between class-conditional distributions. This metric is theoretically powerful as it can be used to construct an upper bound on the Bayes classification error, allowing us to construct a utility function that is a direct surrogate for this risk bound. We instantiate this framework with a subset search strategy that effectively captures feature interactions by maximizing this risk-bound utility. Extensive experiments on real-world datasets demonstrate that our method not only achieves state-of-the-art classification performance but also demonstrates superior robustness and interpretability, providing a principled and powerful alternative to traditional feature selection methods, confirming our framework’s theoretical soundness.
通过风险约束效用最大化进行特征选择
监督特征选择的最终目标是识别一个最小分类风险的特征子集。然而,当代方法往往依赖于启发式或依赖于模型的代理标准,而这些标准与这一基本目标缺乏直接的理论联系。为了弥补这一差距,我们引入了一个新的特征选择框架,该框架直接优化了基于统计学习理论的模型不可知效用函数。我们的方法基于类条件分布之间的1-Wasserstein距离定义了特征子集的效用。这个指标在理论上是强大的,因为它可以用来构建贝叶斯分类误差的上限,允许我们构建一个效用函数,作为这个风险界限的直接代理。我们用子集搜索策略实例化了这个框架,该策略通过最大化风险约束的效用来有效地捕获特征交互。在真实数据集上的大量实验表明,我们的方法不仅实现了最先进的分类性能,而且表现出卓越的鲁棒性和可解释性,为传统的特征选择方法提供了一个原则性和强大的替代方案,证实了我们的框架在理论上的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信