Grade: Generative graph contrastive learning for multimodal recommendation

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu-Chao Ping , Shu-Qin Wang , Zi-Yi Yang , Yong-Quan Dong , Meng-Xiang Hu , Pei-Lin Zhang
{"title":"Grade: Generative graph contrastive learning for multimodal recommendation","authors":"Yu-Chao Ping ,&nbsp;Shu-Qin Wang ,&nbsp;Zi-Yi Yang ,&nbsp;Yong-Quan Dong ,&nbsp;Meng-Xiang Hu ,&nbsp;Pei-Lin Zhang","doi":"10.1016/j.neucom.2025.131630","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal recommender systems based on graph convolutional networks have made significant progress by integrating multiple modal data for item recommendation. While most existing approaches learn user and item representations through modality-related interaction graphs, these approaches still encounter challenges inherent to graph convolutional networks: over-smoothing. To address this challenge, we propose a model named Grade, <u>G</u>enerative G<u>r</u>aph Contr<u>a</u>stive Learning for Multimo<u>d</u>al R<u>e</u>commendations. It combines generative models and contrastive learning and design four task losses. In particular, the generative graph contrastive task generates contrastive views inter-modal through variational graph reconstruction, effectively aligning modal features to improve user and item representations. In addition, the feature perturbation contrastive task generates multimodal noisy views with interference for intra-modal contrast through noise-based self-supervised learning, effectively enhancing the robustness of modality-specific representations. Finally, we incorporate the Variational Graph Autoencoders (VGAE) task and the Bayesian Personalized Ranking (BPR) task. The combination of these four task losses effectively mitigates the issues of over-smoothing. Extensive experiments conducted on three publicly available datasets confirm the superiority of our model. The related code is available on <span><span>https://github.com/Ricardo-Ping/Grade</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131630"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023021","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal recommender systems based on graph convolutional networks have made significant progress by integrating multiple modal data for item recommendation. While most existing approaches learn user and item representations through modality-related interaction graphs, these approaches still encounter challenges inherent to graph convolutional networks: over-smoothing. To address this challenge, we propose a model named Grade, Generative Graph Contrastive Learning for Multimodal Recommendations. It combines generative models and contrastive learning and design four task losses. In particular, the generative graph contrastive task generates contrastive views inter-modal through variational graph reconstruction, effectively aligning modal features to improve user and item representations. In addition, the feature perturbation contrastive task generates multimodal noisy views with interference for intra-modal contrast through noise-based self-supervised learning, effectively enhancing the robustness of modality-specific representations. Finally, we incorporate the Variational Graph Autoencoders (VGAE) task and the Bayesian Personalized Ranking (BPR) task. The combination of these four task losses effectively mitigates the issues of over-smoothing. Extensive experiments conducted on three publicly available datasets confirm the superiority of our model. The related code is available on https://github.com/Ricardo-Ping/Grade.
等级:多模式推荐的生成图对比学习
基于图卷积网络的多模态推荐系统在整合多模态数据进行项目推荐方面取得了重大进展。虽然大多数现有方法通过与模态相关的交互图来学习用户和项目表示,但这些方法仍然遇到图卷积网络固有的挑战:过度平滑。为了解决这一挑战,我们提出了一个名为Grade的模型,生成图对比学习多模式推荐。它将生成模型和对比学习相结合,设计了四种任务损失。特别是,生成图对比任务通过变分图重建生成模态间的对比视图,有效地对齐模态特征,以改善用户和项目的表示。此外,特征扰动对比任务通过基于噪声的自监督学习生成带有干扰的多模态噪声视图,用于模态内对比,有效增强了模态特定表征的鲁棒性。最后,我们结合了变分图自动编码器(VGAE)任务和贝叶斯个性化排序(BPR)任务。这四种任务损失的组合有效地减轻了过度平滑的问题。在三个公开可用的数据集上进行的大量实验证实了我们模型的优越性。相关代码可在https://github.com/Ricardo-Ping/Grade上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信