Jing Zhang, Qiang Ma, Honghui Wang, Bin Chen, Yan Li, Yingmin Liao
{"title":"Molecular insights into the transport and toxicity of 6-PPD: Interactions with human serum albumin and alpha-glucosidase","authors":"Jing Zhang, Qiang Ma, Honghui Wang, Bin Chen, Yan Li, Yingmin Liao","doi":"10.1016/j.bpc.2025.107529","DOIUrl":null,"url":null,"abstract":"<div><div>The rubber antioxidant, <em>N</em>-(1,3-dimethylbutyl)-<em>N</em>′-phenyl-<em>p</em>-phenylenediamine (6-PPD), as an emerging pollutant, is receiving more and more attention recently. This study investigated the intermolecular interactions of 6-PPD with two key biological macromolecules, human serum albumin (HSA) and alpha-glucosidase (AG), to understand the transport and toxic effects of 6-PPD. Using multiple spectroscopic methods and molecular docking technology, the results demonstrated that 6-PPD could bind to both HSA and AG, thereby inducing fluorescence quenching and conformational changes in both proteins. The binding constants were determined to be (5.93 ± 0.20) × 10<sup>5</sup> and (3.17 ± 0.15) × 10<sup>4</sup> L mol<sup>−1</sup> respectively for HSA-6-PPD and AG-6-PPD systems at 298 K, revealing strong binding affinities. Molecular docking identified specific binding sites and non-covalent interactions of the two systems. MD and Energy decomposition analysis revealed the dynamics conformational changes of the complexes and identified van der Waals and electrostatic interactions as primary binding drivers for both systems, while polar solvation energy impeded complex formation. TYR161, ILE142, and TYR138 dominated HSA-6-PPD stabilization, whereas AG-6-PPD was driven by hydrophobic interactions with TRP1369 and VAL1373, with ARG1377 incurring substantial desolvation penalties. Synchronous fluorescence and circular dichroism spectroscopy indicated that 6-PPD binding did not disrupt the microenvironment of Tyr and Trp residues in HSA and AG, while induced structural alterations in HSA and AG that could affect their physiological function. <em>In-vitro</em> tests showed that 6-PPD inhibited AG activity in a dose-dependent manner, with an IC<sub>50</sub> of 8.22 ± 0.44 μmol L<sup>−1</sup>. ADMET and PASS online tools was used to predict physicochemical properties and multiorgan toxicity. This work provided insights into the transport and molecular toxicity of 6-PPD, highlighting the adverse biological effects associated with this common rubber additive.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"328 ","pages":"Article 107529"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225001413","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rubber antioxidant, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6-PPD), as an emerging pollutant, is receiving more and more attention recently. This study investigated the intermolecular interactions of 6-PPD with two key biological macromolecules, human serum albumin (HSA) and alpha-glucosidase (AG), to understand the transport and toxic effects of 6-PPD. Using multiple spectroscopic methods and molecular docking technology, the results demonstrated that 6-PPD could bind to both HSA and AG, thereby inducing fluorescence quenching and conformational changes in both proteins. The binding constants were determined to be (5.93 ± 0.20) × 105 and (3.17 ± 0.15) × 104 L mol−1 respectively for HSA-6-PPD and AG-6-PPD systems at 298 K, revealing strong binding affinities. Molecular docking identified specific binding sites and non-covalent interactions of the two systems. MD and Energy decomposition analysis revealed the dynamics conformational changes of the complexes and identified van der Waals and electrostatic interactions as primary binding drivers for both systems, while polar solvation energy impeded complex formation. TYR161, ILE142, and TYR138 dominated HSA-6-PPD stabilization, whereas AG-6-PPD was driven by hydrophobic interactions with TRP1369 and VAL1373, with ARG1377 incurring substantial desolvation penalties. Synchronous fluorescence and circular dichroism spectroscopy indicated that 6-PPD binding did not disrupt the microenvironment of Tyr and Trp residues in HSA and AG, while induced structural alterations in HSA and AG that could affect their physiological function. In-vitro tests showed that 6-PPD inhibited AG activity in a dose-dependent manner, with an IC50 of 8.22 ± 0.44 μmol L−1. ADMET and PASS online tools was used to predict physicochemical properties and multiorgan toxicity. This work provided insights into the transport and molecular toxicity of 6-PPD, highlighting the adverse biological effects associated with this common rubber additive.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.