A posteriori error analysis of mixed finite element methods for a regularized μ(I)-rheology model of granular materials

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sergio Caucao , Gabriel N. Gatica , Saulo R. Medrado , Yuri D. Sobral
{"title":"A posteriori error analysis of mixed finite element methods for a regularized μ(I)-rheology model of granular materials","authors":"Sergio Caucao ,&nbsp;Gabriel N. Gatica ,&nbsp;Saulo R. Medrado ,&nbsp;Yuri D. Sobral","doi":"10.1016/j.jcp.2025.114378","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a Banach spaces-based mixed variational formulation recently proposed for the stationary <span><math><mrow><mi>μ</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></math></span>-rheology model of granular materials, and develop the first reliable and efficient residual-based <em>a posteriori</em> error estimator for its associated mixed finite element scheme in both 2D and 3D, considering PEERS and AFW-based discretizations. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the first-order Gâteaux derivative of the global operator involved in the problem, combined with appropriate small-data assumptions, a stable Helmholtz decomposition in nonstandard Banach spaces, and local approximation properties of the Raviart–Thomas and Clément interpolants. In turn, inverse inequalities, the localization technique based on bubble functions in local <span><math><msup><mi>L</mi><mi>p</mi></msup></math></span>-spaces, and known results from previous works are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms are reported. In particular, the case of fluid flow through a 2D cavity with two circular obstacles is considered.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"542 ","pages":"Article 114378"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006606","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Banach spaces-based mixed variational formulation recently proposed for the stationary μ(I)-rheology model of granular materials, and develop the first reliable and efficient residual-based a posteriori error estimator for its associated mixed finite element scheme in both 2D and 3D, considering PEERS and AFW-based discretizations. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the first-order Gâteaux derivative of the global operator involved in the problem, combined with appropriate small-data assumptions, a stable Helmholtz decomposition in nonstandard Banach spaces, and local approximation properties of the Raviart–Thomas and Clément interpolants. In turn, inverse inequalities, the localization technique based on bubble functions in local Lp-spaces, and known results from previous works are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms are reported. In particular, the case of fluid flow through a 2D cavity with two circular obstacles is considered.
颗粒材料正则化μ(I)-流变模型混合有限元法的后验误差分析
我们考虑了最近提出的基于Banach空间的颗粒材料稳态μ(I)-流变模型的混合变分公式,并考虑了基于PEERS和afw的离散化,为其相关的二维和三维混合有限元方案开发了第一个可靠和有效的基于残差的后验误差估计器。对于可靠性分析,由于问题的非线性性质,我们采用了问题所涉及的全局算子的一阶g teaux导数,结合适当的小数据假设,非标准Banach空间中的稳定Helmholtz分解,以及Raviart-Thomas和cl ment插值的局部逼近性质。反过来,逆不等式,局部lp空间中基于泡函数的定位技术,以及先前工作的已知结果是产生效率估计的主要工具。最后,给出了几个数值算例,验证了该估计器的理论性质,并说明了相关自适应算法的性能。特别考虑了流体流过具有两个圆形障碍物的二维腔体的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信