Unveiling the electrochemical behavior of lithium manganese phosphate crystallized glass cathodes for energy storage technologies

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A.K. Aladim , M.G. Moustafa , S. Kubuki , Alhulw H. Alshammari , A. Ibrahim
{"title":"Unveiling the electrochemical behavior of lithium manganese phosphate crystallized glass cathodes for energy storage technologies","authors":"A.K. Aladim ,&nbsp;M.G. Moustafa ,&nbsp;S. Kubuki ,&nbsp;Alhulw H. Alshammari ,&nbsp;A. Ibrahim","doi":"10.1016/j.matchemphys.2025.131608","DOIUrl":null,"url":null,"abstract":"<div><div>Escalating global demand for eco-conscious energy storage systems has intensified research efforts toward cutting-edge electrodes for lithium-ion batteries (LIBs). Phosphate-based glasses and their crystallized derivatives (glass-ceramics) have made them attractive options due to their tunable electrochemical characteristics, structural stability, and cost-effectiveness. This study inspects how controlled crystallization affects the performance of a 15Li<sub>2</sub>O–30MnO<sub>2</sub>–55P<sub>2</sub>O<sub>5</sub> (LMP-glass) as a cathode material for LIBs. The LMP-glass was synthesized via melt-quenching and subsequently heat-treated to produce glass-ceramics (LMP-HT2h and LMP-HT5h) with nanocrystalline Mn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Li<sub>2</sub>MnP<sub>2</sub>O<sub>7</sub> and Mn(PO<sub>3</sub>)<sub>2</sub> crystalline phases. Structural characterization via XRD, FTIR, and TEM confirmed the formation of crystalline domains (71–94 nm) embedded in a residual glassy matrix, enhancing ionic conductivity and mechanical stability. Electrochemical evaluations revealed that the LMP-HT5h electrode delivered a high discharge capacity of 256 mAh g<sup>−1</sup> at 30 mA g<sup>−1</sup>, with 86.3 % capacity retention over 100 cycles, outperforming the pristine glass electrode (9.8 % retention). The crystallized samples exhibited superior rate capability (71.9 % capacity retention at 100 mA g<sup>−1</sup>) and lower polarization, attributed to the synergistic effects of nanocrystalline pathways for Li<sup>+</sup> diffusion and the buffering role of the amorphous phase. These presented findings demonstrate the promise of phosphate-based glass-ceramics as high-performance, environmentally benign cathodes for next-generation LIBs, addressing critical challenges in energy density and cycling stability.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"348 ","pages":"Article 131608"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425012544","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Escalating global demand for eco-conscious energy storage systems has intensified research efforts toward cutting-edge electrodes for lithium-ion batteries (LIBs). Phosphate-based glasses and their crystallized derivatives (glass-ceramics) have made them attractive options due to their tunable electrochemical characteristics, structural stability, and cost-effectiveness. This study inspects how controlled crystallization affects the performance of a 15Li2O–30MnO2–55P2O5 (LMP-glass) as a cathode material for LIBs. The LMP-glass was synthesized via melt-quenching and subsequently heat-treated to produce glass-ceramics (LMP-HT2h and LMP-HT5h) with nanocrystalline Mn3(PO4)2, Li2MnP2O7 and Mn(PO3)2 crystalline phases. Structural characterization via XRD, FTIR, and TEM confirmed the formation of crystalline domains (71–94 nm) embedded in a residual glassy matrix, enhancing ionic conductivity and mechanical stability. Electrochemical evaluations revealed that the LMP-HT5h electrode delivered a high discharge capacity of 256 mAh g−1 at 30 mA g−1, with 86.3 % capacity retention over 100 cycles, outperforming the pristine glass electrode (9.8 % retention). The crystallized samples exhibited superior rate capability (71.9 % capacity retention at 100 mA g−1) and lower polarization, attributed to the synergistic effects of nanocrystalline pathways for Li+ diffusion and the buffering role of the amorphous phase. These presented findings demonstrate the promise of phosphate-based glass-ceramics as high-performance, environmentally benign cathodes for next-generation LIBs, addressing critical challenges in energy density and cycling stability.
揭示了用于储能技术的磷酸锰锂结晶玻璃阴极的电化学行为
全球对生态储能系统的需求不断增长,推动了对锂离子电池(lib)尖端电极的研究。磷酸盐基玻璃及其结晶衍生物(玻璃陶瓷)由于其可调的电化学特性、结构稳定性和成本效益而成为有吸引力的选择。本研究考察了控制结晶如何影响15li20 - 30mno2 - 55p2o5 (LMP-glass)作为锂离子电池正极材料的性能。采用熔融淬火法制备lmp -玻璃,并对其进行热处理,得到纳米晶Mn3(PO4)2、Li2MnP2O7和Mn(PO3)2晶相的微晶玻璃(LMP-HT2h和LMP-HT5h)。通过XRD, FTIR和TEM对结构进行表征,证实了在残余玻璃基体中形成了71-94 nm的晶畴,增强了离子电导率和机械稳定性。电化学评价表明,LMP-HT5h电极在30 mA g - 1下具有256 mAh g - 1的高放电容量,在100次循环中具有86.3%的容量保留率,优于原始玻璃电极(9.8%的保留率)。由于纳米晶途径对Li+扩散的协同作用和非晶相的缓冲作用,结晶样品表现出优异的倍率能力(在100 mA g−1时容量保持率为71.9%)和较低的极化。这些研究结果表明,磷酸盐基玻璃陶瓷有望成为下一代锂离子电池的高性能、环保阴极,解决能量密度和循环稳定性方面的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信