Hierarchical structure-guided high-dimensional multi-view clustering

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jiajia Jiang , Kuangnan Fang , Shuangge Ma , Qingzhao Zhang
{"title":"Hierarchical structure-guided high-dimensional multi-view clustering","authors":"Jiajia Jiang ,&nbsp;Kuangnan Fang ,&nbsp;Shuangge Ma ,&nbsp;Qingzhao Zhang","doi":"10.1016/j.jmva.2025.105488","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view data clustering is pivotal for comprehending the heterogeneous structure of data by integrating information from diverse aspects. Nevertheless, practical challenges arise due to the differences in the granularity from different views, resulting in a hierarchical clustering structure within these distinct data types. In this work, we consider such structure information and propose a novel high-dimensional multi-view clustering approach with a hierarchical structure across views. The proposed non-convex problem is effectively tackled using the Alternating Direction Method of Multipliers algorithm, and we establish the statistical properties of the estimator. Simulation results demonstrate the effectiveness and superiority of our proposed method. In the analysis of the histopathological imaging data and gene expression data related to lung adenocarcinoma, our method unveils a hierarchical clustering structure that significantly diverges from alternative approaches.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105488"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000831","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view data clustering is pivotal for comprehending the heterogeneous structure of data by integrating information from diverse aspects. Nevertheless, practical challenges arise due to the differences in the granularity from different views, resulting in a hierarchical clustering structure within these distinct data types. In this work, we consider such structure information and propose a novel high-dimensional multi-view clustering approach with a hierarchical structure across views. The proposed non-convex problem is effectively tackled using the Alternating Direction Method of Multipliers algorithm, and we establish the statistical properties of the estimator. Simulation results demonstrate the effectiveness and superiority of our proposed method. In the analysis of the histopathological imaging data and gene expression data related to lung adenocarcinoma, our method unveils a hierarchical clustering structure that significantly diverges from alternative approaches.
层次结构引导的高维多视图聚类
多视图数据聚类是通过集成来自不同方面的信息来理解数据异构结构的关键。然而,由于来自不同视图的粒度不同,在这些不同的数据类型中产生了分层聚类结构,从而带来了实际的挑战。在这项工作中,我们考虑了这些结构信息,并提出了一种新颖的高维多视图聚类方法,该方法具有跨视图的分层结构。利用乘法器的交替方向法有效地解决了所提出的非凸问题,并建立了估计量的统计性质。仿真结果验证了该方法的有效性和优越性。在分析与肺腺癌相关的组织病理成像数据和基因表达数据时,我们的方法揭示了与其他方法明显不同的分层聚类结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信