In-situ fabrication of carbon nitride/sulfone-containing covalent organic framework composite with S-scheme charge transfer for enhanced photocatalytic hydrogen evolution

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Yusei Kobayashi , Ikki Tateishi , Monir Uzzaman , Hideyuki Katsumata , Mai Furukawa , Satoshi Kaneco
{"title":"In-situ fabrication of carbon nitride/sulfone-containing covalent organic framework composite with S-scheme charge transfer for enhanced photocatalytic hydrogen evolution","authors":"Yusei Kobayashi ,&nbsp;Ikki Tateishi ,&nbsp;Monir Uzzaman ,&nbsp;Hideyuki Katsumata ,&nbsp;Mai Furukawa ,&nbsp;Satoshi Kaneco","doi":"10.1016/j.solidstatesciences.2025.108084","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance hydrogen evolution under visible light, we developed a composite photocatalyst through the in-situ growth of a sulfone-containing <em>β</em>-ketoenamine covalent organic framework (TpTSN-COF) on graphitic carbon nitride (CN). This in-situ growth method facilitated intimate interfacial contact and uniform dispersion of TpTSN-COF on the CN surface, which is crucial for efficient charge transfer. The optimized composite, CN-COF<sub>40</sub>, showed a remarkable hydrogen evolution rate, approximately 8.5 times higher than that of pristine CN under visible-light irradiation. This significant enhancement is attributed to the formation of an S-scheme heterojunction between TpTSN-COF and CN, which promotes efficient spatial separation of photogenerated electrons and holes, suppressing their recombination. These findings highlight that the strategic combination of sulfone-containing COFs with CN via in-situ growth offers a promising avenue for designing highly active and stable photocatalysts for solar-driven hydrogen production.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"169 ","pages":"Article 108084"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825002626","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance hydrogen evolution under visible light, we developed a composite photocatalyst through the in-situ growth of a sulfone-containing β-ketoenamine covalent organic framework (TpTSN-COF) on graphitic carbon nitride (CN). This in-situ growth method facilitated intimate interfacial contact and uniform dispersion of TpTSN-COF on the CN surface, which is crucial for efficient charge transfer. The optimized composite, CN-COF40, showed a remarkable hydrogen evolution rate, approximately 8.5 times higher than that of pristine CN under visible-light irradiation. This significant enhancement is attributed to the formation of an S-scheme heterojunction between TpTSN-COF and CN, which promotes efficient spatial separation of photogenerated electrons and holes, suppressing their recombination. These findings highlight that the strategic combination of sulfone-containing COFs with CN via in-situ growth offers a promising avenue for designing highly active and stable photocatalysts for solar-driven hydrogen production.

Abstract Image

原位制备具有S-scheme电荷转移的氮化碳/含砜共价有机骨架复合材料增强光催化析氢
为了增强可见光下的析氢能力,我们通过在石墨氮化碳(CN)上原位生长含砜的β-酮胺共价有机骨架(TpTSN-COF),开发了一种复合光催化剂。这种原位生长方法促进了TpTSN-COF在CN表面的紧密界面接触和均匀分散,这对有效的电荷转移至关重要。优化后的CN- cof40复合材料在可见光照射下的析氢速率是原始CN的8.5倍左右。这种显著的增强是由于TpTSN-COF和CN之间形成了S-scheme异质结,促进了光生电子和空穴的有效空间分离,抑制了它们的复合。这些发现强调,通过原位生长将含砜的COFs与CN进行战略性结合,为设计高活性和稳定的太阳能制氢光催化剂提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信