A modified Gompertz model and its MATLAB implementation for microbial growth performance assessment

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-09-23 DOI:10.1016/j.mex.2025.103642
Loyal Murphy, Q․Peter He, Jin Wang
{"title":"A modified Gompertz model and its MATLAB implementation for microbial growth performance assessment","authors":"Loyal Murphy,&nbsp;Q․Peter He,&nbsp;Jin Wang","doi":"10.1016/j.mex.2025.103642","DOIUrl":null,"url":null,"abstract":"<div><div>To systematically assess the growth performance of different methanotrophs, microalgae and their cocultures, this work presents an improved four-parameter Zwietering modification of the Gompertz model (4Z model) to extract biologically relevant information using batch growth data. The 4Z model was based on the three-parameter Zwietering modification of the original Gompertz model, with a constant term added to address the discrepancy between model predictions and measurements for the initial period of growth data. The 4Z model provided excellent fits to the batch growth data of different monocultures and cocultures. However, the parameters in the 4Z model are different from the commonly used maximum growth rate and delay time, making interpretation of the results challenging. To facilitate the assessment of different strains, we follow the two-step procedure to extract biologically significant parameters:</div><div>1. Estimate the four parameters in the 4Z model using the whole batch growth trajectory.</div><div>2. Use the 4Z model prediction of early-stage growth data to estimate the biologically significant parameters in the commonly used exponential growth model.</div><div>The estimated biologically significant parameters (maximum growth rate, delay time, and carrying capacity) enabled an unbiased assessment of different strains.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103642"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125004868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To systematically assess the growth performance of different methanotrophs, microalgae and their cocultures, this work presents an improved four-parameter Zwietering modification of the Gompertz model (4Z model) to extract biologically relevant information using batch growth data. The 4Z model was based on the three-parameter Zwietering modification of the original Gompertz model, with a constant term added to address the discrepancy between model predictions and measurements for the initial period of growth data. The 4Z model provided excellent fits to the batch growth data of different monocultures and cocultures. However, the parameters in the 4Z model are different from the commonly used maximum growth rate and delay time, making interpretation of the results challenging. To facilitate the assessment of different strains, we follow the two-step procedure to extract biologically significant parameters:
1. Estimate the four parameters in the 4Z model using the whole batch growth trajectory.
2. Use the 4Z model prediction of early-stage growth data to estimate the biologically significant parameters in the commonly used exponential growth model.
The estimated biologically significant parameters (maximum growth rate, delay time, and carrying capacity) enabled an unbiased assessment of different strains.
微生物生长性能评价的改进Gompertz模型及其MATLAB实现
为了系统地评估不同甲烷氧化菌、微藻及其共培养物的生长性能,本研究提出了一种改进的Gompertz模型(4Z模型)的四参数zwitertering修改,以利用批量生长数据提取生物学相关信息。4Z模型是基于原Gompertz模型的三参数Zwietering修正,并增加了一个常数项,以解决模型预测与初始生长数据测量之间的差异。4Z模型对不同的单培养和共培养的批量生长数据有很好的拟合效果。然而,4Z模型中的参数与常用的最大生长速率和延迟时间不同,使得结果的解释具有挑战性。为了便于对不同菌株进行评估,我们遵循两步程序提取生物学上重要的参数:利用整批增长轨迹估计4Z模型中的四个参数。利用早期生长数据的4Z模型预测,估计常用的指数生长模型中具有生物学意义的参数。估计的生物学显著参数(最大生长速率,延迟时间和承载能力)使不同菌株的评估无偏倚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信