{"title":"Spherical Zone t-Designs for Numerical Integration and Approximation","authors":"Chao Li, Xiaojun Chen","doi":"10.1137/24m1718883","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2072-2093, October 2025. <br/> Abstract. In this paper, we present spherical zone [math]-designs, which provide quadrature rules with equal weight for spherical polynomials of degree at most [math] on a spherical zone [math] with [math] and [math]. The spherical zone [math]-design is constructed by combining spherical [math]-designs and trapezoidal rules on [math] with polynomial exactness [math]. We show that the spherical zone [math]-designs using spherical [math]-designs only provide quadrature rules with equal weight for spherical zonal polynomials of degree at most [math] on the spherical zone. We apply the proposed spherical zone [math]-designs to numerical integration, hyperinterpolation and sparse approximation on the spherical zone. Theoretical approximation error bounds are presented. Some numerical examples are given to illustrate the theoretical results and show the efficiency of the proposed spherical zone [math]-designs.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"37 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1718883","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2072-2093, October 2025. Abstract. In this paper, we present spherical zone [math]-designs, which provide quadrature rules with equal weight for spherical polynomials of degree at most [math] on a spherical zone [math] with [math] and [math]. The spherical zone [math]-design is constructed by combining spherical [math]-designs and trapezoidal rules on [math] with polynomial exactness [math]. We show that the spherical zone [math]-designs using spherical [math]-designs only provide quadrature rules with equal weight for spherical zonal polynomials of degree at most [math] on the spherical zone. We apply the proposed spherical zone [math]-designs to numerical integration, hyperinterpolation and sparse approximation on the spherical zone. Theoretical approximation error bounds are presented. Some numerical examples are given to illustrate the theoretical results and show the efficiency of the proposed spherical zone [math]-designs.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.