Maria Christine Veit,Ron Stauder,Yu Bai,Ragini Gabhrani,Matthias Schmidt,Stephan Klähn,Bin Lai
{"title":"The necessity of multi-parameter normalization in cyanobacterial research: A case study of the PsbU in Synechocystis sp. PCC 6803 using CRISPRi.","authors":"Maria Christine Veit,Ron Stauder,Yu Bai,Ragini Gabhrani,Matthias Schmidt,Stephan Klähn,Bin Lai","doi":"10.1016/j.jbc.2025.110763","DOIUrl":null,"url":null,"abstract":"Photosystem II (PSII) is a multiprotein complex and plays a central role in oxygenic photosynthesis. PsbU, a 12 kDa subunit of PSII, is associated with thermotolerance and a structural stabilization of the oxygen-evolving complex in cyanobacteria. Corresponding knockout strains showed decreased oxygen evolution rates, although the growth was not impaired. In this study, we provide further insights into the consequences of PsbU perturbations and propose to revisit the impact of PsbU on cell physiology. We made use of CRISPRi to knock down the psbU gene in Synechocystis sp. PCC 6803, and assessed previously described effects referred to different biomass parameters including optical density, chlorophyll a content and cell number. After knocking down psbU, the growth rate was decreased by 15% based on counting the cell numbers, while this effect was not observed when monitoring optical density. Furthermore, the oxygen evolution rate per cell in the psbU knockdown strain did not show a significant difference compared to the control groups, which was probably due to its larger cell size and higher chlorophyll a content per cell. The decreased quantum efficiency of pigments was compensated by the increased pigment content on single cell level in the knockdown strain. Our results complement previous analyses and highlight the importance of evaluating cyanobacterial physiology based on different biomass quantitative units to avoid misinterpretation of the results.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"18 1","pages":"110763"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110763","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photosystem II (PSII) is a multiprotein complex and plays a central role in oxygenic photosynthesis. PsbU, a 12 kDa subunit of PSII, is associated with thermotolerance and a structural stabilization of the oxygen-evolving complex in cyanobacteria. Corresponding knockout strains showed decreased oxygen evolution rates, although the growth was not impaired. In this study, we provide further insights into the consequences of PsbU perturbations and propose to revisit the impact of PsbU on cell physiology. We made use of CRISPRi to knock down the psbU gene in Synechocystis sp. PCC 6803, and assessed previously described effects referred to different biomass parameters including optical density, chlorophyll a content and cell number. After knocking down psbU, the growth rate was decreased by 15% based on counting the cell numbers, while this effect was not observed when monitoring optical density. Furthermore, the oxygen evolution rate per cell in the psbU knockdown strain did not show a significant difference compared to the control groups, which was probably due to its larger cell size and higher chlorophyll a content per cell. The decreased quantum efficiency of pigments was compensated by the increased pigment content on single cell level in the knockdown strain. Our results complement previous analyses and highlight the importance of evaluating cyanobacterial physiology based on different biomass quantitative units to avoid misinterpretation of the results.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.