Jun Yi Chong , Tsui-Chin Huang , Sheng-Ming Chueh , Cheng-Yi Ma , Tzu-Ting Kuo , Jia-Jun He , Yii-Jwu Lo , Kuan-Chieh Peng , Mohamed Ali , Hsin-Yi Chang , Shih-Min Hsia
{"title":"γ-Tocotrienol attenuates oxidative stress and preserves mitochondrial function in inflammation-induced muscle atrophy","authors":"Jun Yi Chong , Tsui-Chin Huang , Sheng-Ming Chueh , Cheng-Yi Ma , Tzu-Ting Kuo , Jia-Jun He , Yii-Jwu Lo , Kuan-Chieh Peng , Mohamed Ali , Hsin-Yi Chang , Shih-Min Hsia","doi":"10.1016/j.redox.2025.103874","DOIUrl":null,"url":null,"abstract":"<div><div>Muscle atrophy, marked by the loss of skeletal muscle mass and strength, presents a major health concern with diverse etiologies, including chronic inflammation. Effective interventions are urgently needed for its prevention and treatment. Although α-tocopherol, the most abundant form of vitamin E, is known for its antioxidant benefits in muscle health, γ-tocotrienol exhibits superior antioxidant and anti-inflammatory properties. This study investigates the protective effects of γ-tocotrienol against muscle atrophy and compares its efficacy with α-tocopherol. Muscle atrophy was induced in differentiated C2C12 myotubes using lipopolysaccharide (LPS), with vitamin E pre-treatment applied prior to LPS challenge. Myotube morphology, expression of atrophy-related markers, and underlying molecular pathways were examined through immunofluorescence, western blotting, and quantitative proteomics. LPS treatment induced significant myotube atrophy without affecting cell viability. Notably, γ-tocotrienol pre-treatment preserved myotube size and suppressed key atrophy markers, including the E3 ubiquitin ligases MuRF-1 and Fbxo32/Atrogin-1. Proteomic analysis quantified 5,371 proteins and revealed that γ-tocotrienol alleviated atrophy by enhancing extracellular matrix organization and attenuating oxidative stress and mitochondrial dysfunction. These protective effects were further confirmed <em>in vivo</em>, where γ-tocotrienol administration preserved muscle strength, suppressed pro-inflammatory signaling, and restored mitochondrial biogenesis in LPS-treated mice. Collectively, these findings demonstrate that γ-tocotrienol offers superior protection against muscle atrophy compared to α-tocopherol, highlighting its therapeutic potential for individuals at risk of muscle wasting.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"87 ","pages":"Article 103874"},"PeriodicalIF":11.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003878","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle atrophy, marked by the loss of skeletal muscle mass and strength, presents a major health concern with diverse etiologies, including chronic inflammation. Effective interventions are urgently needed for its prevention and treatment. Although α-tocopherol, the most abundant form of vitamin E, is known for its antioxidant benefits in muscle health, γ-tocotrienol exhibits superior antioxidant and anti-inflammatory properties. This study investigates the protective effects of γ-tocotrienol against muscle atrophy and compares its efficacy with α-tocopherol. Muscle atrophy was induced in differentiated C2C12 myotubes using lipopolysaccharide (LPS), with vitamin E pre-treatment applied prior to LPS challenge. Myotube morphology, expression of atrophy-related markers, and underlying molecular pathways were examined through immunofluorescence, western blotting, and quantitative proteomics. LPS treatment induced significant myotube atrophy without affecting cell viability. Notably, γ-tocotrienol pre-treatment preserved myotube size and suppressed key atrophy markers, including the E3 ubiquitin ligases MuRF-1 and Fbxo32/Atrogin-1. Proteomic analysis quantified 5,371 proteins and revealed that γ-tocotrienol alleviated atrophy by enhancing extracellular matrix organization and attenuating oxidative stress and mitochondrial dysfunction. These protective effects were further confirmed in vivo, where γ-tocotrienol administration preserved muscle strength, suppressed pro-inflammatory signaling, and restored mitochondrial biogenesis in LPS-treated mice. Collectively, these findings demonstrate that γ-tocotrienol offers superior protection against muscle atrophy compared to α-tocopherol, highlighting its therapeutic potential for individuals at risk of muscle wasting.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.