Artificial intelligence applications in refractive error management: A systematic review and meta-analysis.

IF 7.7
PLOS digital health Pub Date : 2025-09-25 eCollection Date: 2025-09-01 DOI:10.1371/journal.pdig.0000904
Josephine Ampong, Sylvia Agyekum, Werner Eisenbarth, Albert Kwadjo Amoah Andoh, Isaiah Osei Duah Junior, Gabriel Amankwah, Gabriel Kwaku Agbeshie, Eldrick Adu Acquah, Clement Afari, Emmanuel Assan, Saphiel Osei Poku, Karen Ama Sam, Josephine Ampomah Boateng, Kwadwo Owusu Akuffo
{"title":"Artificial intelligence applications in refractive error management: A systematic review and meta-analysis.","authors":"Josephine Ampong, Sylvia Agyekum, Werner Eisenbarth, Albert Kwadjo Amoah Andoh, Isaiah Osei Duah Junior, Gabriel Amankwah, Gabriel Kwaku Agbeshie, Eldrick Adu Acquah, Clement Afari, Emmanuel Assan, Saphiel Osei Poku, Karen Ama Sam, Josephine Ampomah Boateng, Kwadwo Owusu Akuffo","doi":"10.1371/journal.pdig.0000904","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has transformed healthcare, and is becoming increasingly useful in eye care. We conducted a systematic review and meta-analysis of the use of AI in the diagnosis, detection, prediction, progression, and treatment of refractive errors (REs). The study adhered to the PRISMA checklist to ensure transparent reporting. The following databases were searched from inception to January 2025, with an English language restriction: PubMed, Web of Science, Embase, Scopus, Cochrane Library and Google Scholar. Two independent reviewers performed study screening, data extraction, and quality assessment, with a third author resolving discrepancies. All original studies on the use of AI techniques in RE were identified and the effectiveness of these techniques was compared. A critical appraisal was conducted using the QUADAS-2 risk-of-bias tool. A meta-analysis was performed using R software (version 4.5.0). Of 6,288 records retrieved, 45 met eligibility for systematic review, with 19 included in meta-analysis. Among these 45 studies, 55.5% (25/45) applied deep learning (DL) approaches, while 44.4% (20/45) employed machine learning (ML) techniques. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary of receiver operating characteristic (SROC) for detection and/or diagnosis studies were 0.94 (95%CI, 0.90-0.97), 0.96 (95%CI, 0.92-0.98), 382.56 (95% CI 111.91 -1307.77) and 0.98 (95%CI, 0.91-0.97), respectively. For prediction of REs, the pooled sensitivity, specificity, DOR, and SROC were 0.87 (95%CI, 0.73-0.94), 0.96 (95%CI, 0.90-0.980), 159.94 (95% CI, 40.17-636.85) and 0.96 (95%CI, 0.85-0.95), respectively. Among studies focused on progression, performance metrics ranged from AUC = 0.845-0.99, R² = 0.613-0.964, and MAE = 0.119D-0.49D. In treatment studies, performance varied more widely, with AUC values between 0.60-0.94 and MAE from 0.17D-0.54D. Collectively, AI technologies, particularly DL and ML, achieved high diagnostic and predictive accuracy in RE management. Future research should focus on developing generalizable models trained on diverse datasets to ensure broad clinical relevance.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 9","pages":"e0000904"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has transformed healthcare, and is becoming increasingly useful in eye care. We conducted a systematic review and meta-analysis of the use of AI in the diagnosis, detection, prediction, progression, and treatment of refractive errors (REs). The study adhered to the PRISMA checklist to ensure transparent reporting. The following databases were searched from inception to January 2025, with an English language restriction: PubMed, Web of Science, Embase, Scopus, Cochrane Library and Google Scholar. Two independent reviewers performed study screening, data extraction, and quality assessment, with a third author resolving discrepancies. All original studies on the use of AI techniques in RE were identified and the effectiveness of these techniques was compared. A critical appraisal was conducted using the QUADAS-2 risk-of-bias tool. A meta-analysis was performed using R software (version 4.5.0). Of 6,288 records retrieved, 45 met eligibility for systematic review, with 19 included in meta-analysis. Among these 45 studies, 55.5% (25/45) applied deep learning (DL) approaches, while 44.4% (20/45) employed machine learning (ML) techniques. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary of receiver operating characteristic (SROC) for detection and/or diagnosis studies were 0.94 (95%CI, 0.90-0.97), 0.96 (95%CI, 0.92-0.98), 382.56 (95% CI 111.91 -1307.77) and 0.98 (95%CI, 0.91-0.97), respectively. For prediction of REs, the pooled sensitivity, specificity, DOR, and SROC were 0.87 (95%CI, 0.73-0.94), 0.96 (95%CI, 0.90-0.980), 159.94 (95% CI, 40.17-636.85) and 0.96 (95%CI, 0.85-0.95), respectively. Among studies focused on progression, performance metrics ranged from AUC = 0.845-0.99, R² = 0.613-0.964, and MAE = 0.119D-0.49D. In treatment studies, performance varied more widely, with AUC values between 0.60-0.94 and MAE from 0.17D-0.54D. Collectively, AI technologies, particularly DL and ML, achieved high diagnostic and predictive accuracy in RE management. Future research should focus on developing generalizable models trained on diverse datasets to ensure broad clinical relevance.

人工智能在屈光不正管理中的应用:系统综述和荟萃分析。
人工智能(AI)已经改变了医疗保健,并在眼科护理中变得越来越有用。我们对人工智能在屈光不正(REs)的诊断、检测、预测、进展和治疗中的应用进行了系统回顾和荟萃分析。该研究遵循PRISMA核对表,以确保报告透明。以下数据库从成立到2025年1月被检索,有英语语言限制:PubMed, Web of Science, Embase, Scopus, Cochrane Library和谷歌Scholar。两名独立审稿人进行研究筛选、数据提取和质量评估,第三位作者解决差异。所有关于在RE中使用人工智能技术的原始研究都被确定,并对这些技术的有效性进行了比较。使用QUADAS-2偏倚风险工具进行了关键评估。采用R软件(4.5.0版)进行meta分析。在检索到的6288条记录中,45条符合系统评价的条件,19条纳入meta分析。在这45项研究中,55.5%(25/45)应用了深度学习(DL)方法,44.4%(20/45)采用了机器学习(ML)技术。检测和/或诊断研究的合并敏感性、特异性、诊断优势比(DOR)和受者工作特征总结(SROC)分别为0.94 (95%CI, 0.90-0.97)、0.96 (95%CI, 0.92-0.98)、382.56 (95%CI, 111.91 -1307.77)和0.98 (95%CI, 0.91-0.97)。对于REs的预测,合并敏感性、特异性、DOR和SROC分别为0.87 (95%CI, 0.73-0.94)、0.96 (95%CI, 0.90-0.980)、159.94 (95%CI, 40.17-636.85)和0.96 (95%CI, 0.85-0.95)。在关注进展的研究中,性能指标的范围为AUC = 0.845-0.99, R²= 0.613-0.964,MAE = 0.119 -0.49 d。在治疗研究中,表现差异更大,AUC值在0.60-0.94之间,MAE在0.17 -0.54 d之间。总的来说,人工智能技术,特别是DL和ML,在RE管理中实现了很高的诊断和预测准确性。未来的研究应侧重于开发在不同数据集上训练的可推广模型,以确保广泛的临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信