Enhancing Concept-Based Explanation with Vision-Language Models.

Imran Hossain, Ghada Zamzmi, Peter Mouton, Yu Sun, Dmitry Goldgof
{"title":"Enhancing Concept-Based Explanation with Vision-Language Models.","authors":"Imran Hossain, Ghada Zamzmi, Peter Mouton, Yu Sun, Dmitry Goldgof","doi":"10.1109/CBMS61543.2024.00044","DOIUrl":null,"url":null,"abstract":"<p><p>Although concept-based approaches are widely used to explain a model's behavior and assess the contributions of different concepts in decision-making, identifying relevant concepts can be challenging for non-experts. This paper introduces a novel method that simplifies concept selection by leveraging the capabilities of a state-of-the-art large Vision-Language Model (VLM). Our method employs a VLM to select textual concepts that describe the classes in the target dataset. We then transform these influential textual concepts into human-readable image concepts using a text-to-image model. This process allows us to explain the targeted network in a post-hoc manner. Further, we use directional derivatives and concept activation vectors to quantify the importance of the generated concepts. We evaluate our method on a neonatal pain classification task, analyzing the sensitivity of the model's output for the generated concepts. The results demonstrate that the VLM not only generates coherent and meaningful concepts that are easily understandable by non-experts but also achieves performance comparable to that of natural image concepts without the need for additional annotation costs.</p>","PeriodicalId":74567,"journal":{"name":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","volume":"2024 ","pages":"219-224"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS61543.2024.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although concept-based approaches are widely used to explain a model's behavior and assess the contributions of different concepts in decision-making, identifying relevant concepts can be challenging for non-experts. This paper introduces a novel method that simplifies concept selection by leveraging the capabilities of a state-of-the-art large Vision-Language Model (VLM). Our method employs a VLM to select textual concepts that describe the classes in the target dataset. We then transform these influential textual concepts into human-readable image concepts using a text-to-image model. This process allows us to explain the targeted network in a post-hoc manner. Further, we use directional derivatives and concept activation vectors to quantify the importance of the generated concepts. We evaluate our method on a neonatal pain classification task, analyzing the sensitivity of the model's output for the generated concepts. The results demonstrate that the VLM not only generates coherent and meaningful concepts that are easily understandable by non-experts but also achieves performance comparable to that of natural image concepts without the need for additional annotation costs.

用视觉语言模型增强基于概念的解释。
尽管基于概念的方法被广泛用于解释模型的行为和评估决策中不同概念的贡献,但识别相关概念对于非专家来说可能是具有挑战性的。本文介绍了一种利用最先进的大型视觉语言模型(VLM)简化概念选择的新方法。我们的方法使用VLM来选择描述目标数据集中类的文本概念。然后,我们使用文本到图像模型将这些有影响力的文本概念转换为人类可读的图像概念。这个过程使我们能够以事后的方式解释目标网络。此外,我们使用方向导数和概念激活向量来量化生成的概念的重要性。我们在新生儿疼痛分类任务上评估了我们的方法,分析了模型输出对生成概念的敏感性。结果表明,VLM不仅生成了非专家易于理解的连贯且有意义的概念,而且在不需要额外注释成本的情况下,达到了与自然图像概念相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信