Enhancing genome recovery across metagenomic samples using MAGmax.

IF 5.4
Arangasamy Yazhini, Johannes Söding
{"title":"Enhancing genome recovery across metagenomic samples using MAGmax.","authors":"Arangasamy Yazhini, Johannes Söding","doi":"10.1093/bioinformatics/btaf538","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The number of metagenome-assembled genomes (MAGs) is rapidly increasing with the growing scale of metagenomic studies, driving fast progress in microbiome research. Sample-wise assembly has become the standard due to its computational efficiency and strain-level resolution. It requires dereplication, the removal of near-identical genomes assembled in different metagenomic samples. We present MAGmax, an efficient dereplication tool that enhances both the quantity and quality of MAGs through a strategy of bin merging and reassembly. Unlike dRep, which selects a single representative bin per genome cluster, MAGmax merges multiple bins within a cluster and reassembles them to increase coverage. MAGmax produces more dereplicated, higher-quality MAGs than dRep at 1.6× its speed and using three times less memory.</p><p><strong>Availability and implementation: </strong>The MAGmax open source software, implemented in Rust, is available under the GPLv3 license at https://github.com/soedinglab/MAGmax.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The number of metagenome-assembled genomes (MAGs) is rapidly increasing with the growing scale of metagenomic studies, driving fast progress in microbiome research. Sample-wise assembly has become the standard due to its computational efficiency and strain-level resolution. It requires dereplication, the removal of near-identical genomes assembled in different metagenomic samples. We present MAGmax, an efficient dereplication tool that enhances both the quantity and quality of MAGs through a strategy of bin merging and reassembly. Unlike dRep, which selects a single representative bin per genome cluster, MAGmax merges multiple bins within a cluster and reassembles them to increase coverage. MAGmax produces more dereplicated, higher-quality MAGs than dRep at 1.6× its speed and using three times less memory.

Availability and implementation: The MAGmax open source software, implemented in Rust, is available under the GPLv3 license at https://github.com/soedinglab/MAGmax.

Supplementary information: Supplementary data are available at Bioinformatics online.

利用MAGmax增强宏基因组样本的基因组恢复。
摘要:随着宏基因组研究规模的扩大,宏基因组组装基因组(MAGs)的数量迅速增加,推动了微生物组研究的快速发展。基于样本的装配由于其计算效率和应变级分辨率而成为标准。它需要去复制,去除在不同宏基因组样本中组装的几乎相同的基因组。我们提出了MAGmax,一个有效的反复制工具,通过bin合并和重组策略提高了MAGs的数量和质量。与dRep不同的是,它在每个基因组簇中选择一个具有代表性的bin, MAGmax在一个簇中合并多个bin并重新组装它们以增加覆盖率。MAGmax的速度是dRep的1.6倍,使用的内存却只有dRep的三分之一。可用性和实现:MAGmax开源软件,用Rust实现,在GPLv3许可下可在https://github.com/soedinglab/MAGmax.Supplementary上获得信息:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信