DRAGoN: a robust pipeline for analyzing DRUG-seq datasets.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-09-08 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf214
Scott Norton, John M Gaspar
{"title":"DRAGoN: a robust pipeline for analyzing DRUG-seq datasets.","authors":"Scott Norton, John M Gaspar","doi":"10.1093/bioadv/vbaf214","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Existing bioinformatics pipelines to process DRUG-seq datasets have limited flexibility and can have difficulty analyzing current datasets without requiring excessive computational time or memory.</p><p><strong>Results: </strong>Here, we describe an alternative, DRAGoN, which is fast, robust, and performs as well as or better than competing pipelines on key benchmarks without sacrificing accuracy. This is accomplished primarily via a preliminary demultiplexing step that facilitates the parallelization of the pipeline as well as the collection of per-well statistics that assist with quality control. DRAGoN provides the user maximum flexibility with respect to filtering, alignment, counting, and downsampling, and it efficiently collapses UMIs.</p><p><strong>Availability and implementation: </strong>DRAGoN is a Nextflow pipeline that utilizes open-source software alongside custom C++ programs and Python scripts. It is freely available at https://github.com/MSDLLCPapers/DRAGoN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf214"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Existing bioinformatics pipelines to process DRUG-seq datasets have limited flexibility and can have difficulty analyzing current datasets without requiring excessive computational time or memory.

Results: Here, we describe an alternative, DRAGoN, which is fast, robust, and performs as well as or better than competing pipelines on key benchmarks without sacrificing accuracy. This is accomplished primarily via a preliminary demultiplexing step that facilitates the parallelization of the pipeline as well as the collection of per-well statistics that assist with quality control. DRAGoN provides the user maximum flexibility with respect to filtering, alignment, counting, and downsampling, and it efficiently collapses UMIs.

Availability and implementation: DRAGoN is a Nextflow pipeline that utilizes open-source software alongside custom C++ programs and Python scripts. It is freely available at https://github.com/MSDLLCPapers/DRAGoN.

DRAGoN:用于分析DRUG-seq数据集的强大管道。
动机:处理DRUG-seq数据集的现有生物信息学管道具有有限的灵活性,并且在不需要过多计算时间或内存的情况下难以分析当前数据集。结果:在这里,我们描述了一个替代方案,DRAGoN,它快速,健壮,并且在不牺牲准确性的情况下,在关键基准上表现得与竞争管道一样好或更好。这主要是通过一个初步的解复用步骤来完成的,该步骤促进了管道的并行化,并收集了有助于质量控制的每口井统计数据。DRAGoN在过滤、对齐、计数和下采样方面为用户提供了最大的灵活性,并且它有效地折叠了umi。可用性和实现:DRAGoN是Nextflow的一个管道,它利用开源软件以及定制的c++程序和Python脚本。它可以在https://github.com/MSDLLCPapers/DRAGoN上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信